Fluo-4 AM *Ultrapure Grade* *CAS 273221-67-3*

!   Available upgrades:  Fluo-8®, AM  Cal-520®, AM  Calbryte™ 520 AM
Image Viewer
Chemical structure for Fluo-4 AM *Ultrapure Grade* *CAS 273221-67-3*
Roll over image to zoom in
Unit Size: Cat No: Price (USD): Qty:
20550 $295

Export item/cart as Excel file

Send item/cart as email

Important: We request your email address to ensure that the recipient(s) knows you intended for them to see the email, and that it is not junk mail.
Your Name*:
Your Email*:
Recipient Email*:
Your Personal Message:
Additional Ordering Information
Telephone: 1-800-990-8053
Fax: 1-408-733-1304
Email: sales@aatbio.com
International: See distributors


Ex/Em (nm)494/516
CAS #273221-67-3
Storage Freeze (<-15 °C)
Minimize light exposure
Category GPCR
Calcium GPCR Assays
Related Calcium Channels
pH and Ion Indicators
Calcium measurement is critical for numerous biological investigations. Fluorescent probes that show spectral responses upon binding calcium have enabled researchers to investigate changes in intracellular free calcium concentrations by using fluorescence microscopy, flow cytometry, fluorescence spectroscopy and fluorescence microplate readers. Fluo-3 and Fluo-4 are most commonly used among the visible light-excitable calcium indicators. Fluo-4 is an analog of Fluo-3 with the two chlorine substituents replaced by fluorines, which results in increased fluorescence excitation at 488 nm and consequently higher fluorescence signal levels. Cells may be loaded with the AM ester forms of these calcium indicators by adding the dissolved indicator directly to dishes containing cultured cells. However, Fluo-3 AM and Fluo-4 AM are only moderately fluorescent in live cells upon esterase hydrolysis, and require harsh cell loading conditions to maximize their cellular calcium responses. Fluo-8® and Cal-520® calcium dyes have been developed to improve cell loading and calcium response while maintaining the convenient Fluo-3 and Fluo-4 spectral wavelength of maximum excitation @ ~490 nm and maximum emission @ ~520 nm.

Common stock solution preparation

Table 1. Volume of DMSO needed to reconstitute specific mass of Fluo-4 AM *Ultrapure Grade* *CAS 273221-67-3* to given concentration. Note that volume is only for preparing stock solution. Refer to sample experimental protocol for appropriate experimental/physiological buffers.

Molarity calculator

Table 2. Enter any two values (mass, volume, concentration) to calculate the third.

Mass Molecular weight Volume Concentration Moles
/ = x =

Spectrum Advanced Spectrum Viewer

Sorry, your browser does not support inline SVG. Relative Intensity (%) 100 80 60 40 20 0 Sorry, your browser does not support inline SVG.
Sorry, your browser does not support inline SVG. Sorry, your browser does not support inline SVG.
Move mouse over grid to display wavelength & intensity values.

Wavelength (nm)


Quick Preview

This protocol only provides a guideline, and should be modified according to your specific needs.

Use of Calcium indicator AM Esters


1. Load Cells with Calcium Indicator AM Esters:

AM esters are the non-polar esters that readily cross live cell membranes, and rapidly hydrolyzed by cellular esterases inside live cells. AM esters are widely used for loading a variety of polar fluorescent probes into live cell non-invasively. However, cautions must be excised when AM esters are used since they are susceptible to hydrolysis, particularly in solution. They should be reconstituted in high-quality, anhydrous dimethylsulfoxide (DMSO). DMSO stock solutions should be stored desiccated at -20 °C and protected from light. Under these conditions, AM esters should be stable for several months.


Following is our recommended protocol for loading AM esters into live cells. This protocol only provides a guideline, and should be modified according to your specific needs.

a)       Prepare a 2 to 5 mM AM esters stock solution in high-quality, anhydrous DMSO.

b)       On the day of the experiment, either dissolve calcium indicators solid in DMSO or thaw an aliquot of the indicator stock solutions to room temperature. Prepare a working solution of 2 to 20 µM in the buffer of your choice (such as Hanks and Hepes buffer) with 0.04% Pluronic® F-127. For most cell lines we recommend the final concentration of calcium indicators be 4-5 uM. The exact concentration of indicators required for cell loading must be determined empirically. To avoid any artifacts caused by overloading and potential dye toxicity, it is recommended to use the minimal probe concentration that can yield sufficient signal strength.

Note: The nonionic detergent Pluronic® F-127 is sometimes used to increase the aqueous solubility of calcium indicator AM esters.  A variety of Pluronic® F-127 solutions can be purchased from AAT Bioquest.

c)       If your cells (such as CHO cells) containing the organic anion-transports, probenecid (2–5 mM) or sulfinpyrazone (0.2–0.5 mM) may be added to the the dye working solution (final in well concentration will be 1-2.5 mM for probenecid, or 0.1 -0.25 mM for sulfinpyrazone) to reduce the leakage of the de-esterified indicators.

Note: A variety of ReadiUse™ probenecid including water soluble sodium salt and stabilized solution can be purchased from AAT Bioquest

d)       Add equal volume of the dye working solution (from Step b or c) into your cell plate.

e)       Incubate the dye-loading plate room at temperature or 37 °C for 20 minutes (especially Fluo-8 AM) to 2 hours, and then incubate the plate at room temperature for another 30 minutes.

Note1: Decreasing the loading temperature might reduce the compartmentalization of the indictor.

Note2: Incubate the Cal-520 AM longer than 2 hours gives better signal intensity for some cell lines.

f)        Replace the dye working solution with HHBS or buffer of your choice (containing an anion transporter inhibitor, such as 1 mM probenecid, if applicable) to remove excess probes.

g)       Run the experiments at desired Ex/Em wavelengths (see Table 1).


2. Measure Intracellular Calcium Responses:


Figure 1. Response of endogenous P2Y receptor to ATP in CHO-M1 cells without probenecid. CHO-M1 cells were seeded overnight at 40,000 cells per 100 µL per well in a 96-well black wall/clear bottom costar plate. 100 µl of 4 µM Fluo-3 AM, Fluo-4 AM or Cal 520® AM in HHBS were added into the wells, and the cells were incubated at 37 °C for 2 hour. The dye loading medium were replaced with 100 µl HHBS, 50 µl of 300 µM ATP were added, and then imaged with a fluorescence microscope (Olympus IX71) using FITC channel.

A             B 

Figure 2. ATP-stimulated calcium response of endogenous P2Y receptor in CHO-K1 cells measured with Cal-520® or Fluo-4 AM. CHO-K1cells were seeded overnight in 50,000 cells per 100 µL per well in a 96-well black wall/clear bottom costar plate. 100 µL of 5 µM Fluo-4 AM or the Cal-520® AM with (A) or without (B) 2.5 mM probenecid was added into the cells, and the cells were incubated at 37oC for 2 hours.  ATP (50µL/well) was added by FlexStation (Molecular Devices) to achieve the final indicated concentrations.


Use of Calcium indicator Salts

To determine either the free calcium concentration of a solution or the Kd of a single-wavelength calcium indicator, the following equation is used:

[Ca]free = Kd[F - Fmin]/Fmax - F]

Where F is the fluorescence of the indicator at experimental calcium levels, Fmin is the fluorescence in the absence of calcium and Fmax is the fluorescence of the calcium-saturated probe. The dissociation constant (Kd) is a measure of the affinity of the probe for calcium. The Ca2+-binding and spectroscopic properties of fluorescent indicators vary quite significantly in cellular environments compared to calibration solutions. In situ calibrations of intracellular indicators typically yield Kd values significantly higher than in vitro determinations. In situ calibrations are performed by exposing loaded cells to controlled Ca2+ buffers in the presence of ionophores such as A-23187, 4-bromo A-23187 and ionomycin. Alternatively, cell permeabilization agents such as digitonin or Triton® X-100 can be used to expose the indicator to the controlled Ca2+ levels of the extracellular medium. The Kd values of some calcium reagents are listed in Table 1 for your reference.


Use of Calcium indicator Conjugates


Compared to the free ion indicator, dextran conjugates of these same indicators exhibit both reduced compartmentalization and much lower rates of dye leakage. Since the molecular weight of the dextran, net charge, degree of labeling, and nature of the dye may affect the experiment, researchers are advised to consult the primary literature for information specific to the application of interest.

References & Citations

14, 15-epoxyeicosatrienoic acid produced by cytochrome P450s enhances neurite outgrowth of PC 12 and rat hippocampal neuronal cells
Authors: Ami Oguro, Takumi Inoue, Suguru N Kudoh, Susumu Imaoka
Journal: Pharmacology Research & Perspectives (2018): e00428

Succinate, increased in metabolic syndrome, activates GPR91 receptor signaling in urothelial cells
Authors: Abubakr H Mossa, Monica Velasquez Flores, Philippe G Cammisotto, Lysanne Campeau
Journal: Cellular Signalling (2017)