Live or Dead™ Fixable Dead Cell Staining Kit *Orange Fluorescence with 405 nm Excitation*
Ordering information
Price | |
Catalog Number | |
Unit Size | |
Quantity |
Additional ordering information
Telephone | 1-800-990-8053 |
Fax | 1-800-609-2943 |
sales@aatbio.com | |
Quotation | Request |
International | See distributors |
Shipping | Standard overnight for United States, inquire for international |
Spectral properties
Excitation (nm) | 394 |
Emission (nm) | 537 |
Storage, safety and handling
H-phrase | H303, H313, H333 |
Hazard symbol | XN |
Intended use | Research Use Only (RUO) |
R-phrase | R20, R21, R22 |
UNSPSC | 12352200 |
Alternative formats
Overview | ![]() ![]() |
See also: Cell Viability Assays, Cellular Processes, Flow Cytometry Reagents, Fluorescence Activated Cell Sorting (FACS), Live or Dead Cell Viability Assays
Excitation (nm) 394 | Emission (nm) 537 |
Our Live or Dead™ Fixable Dead Cell Staining Kits are a set of tools for labeling cells for fluorescence microscopic investigations of cellular functions. The effective labeling of cells provides a powerful method for studying cellular events in a spatial and temporal context. This particular kit is designed to uniformly label fixed mammalian cells in blue fluorescence for flow cytometry applications with violet laser excitation. The kit uses a proprietary blue fluorescent dye that is more fluorescent upon bonding to cellular components. The fluorescent dye used in the kit is well excited with the violet laser (405 nm excitation) to fluorescence at 550 nm. The kit provides all the essential components with an optimized cell-labeling protocol. It is an excellent tool for preserving of fluorescent images of particular cells, and can also be used for fluorescence flow cytometry applications.
Platform
Flow cytometer
Excitation | 405 nm laser |
Emission | 525/50 nm filter |
Instrument specification(s) | Pacific Orange channel |
Fluorescence microscope
Excitation | 398 nm |
Emission | 550 nm |
Recommended plate | Black wall/clear bottom |
Components
Example protocol
AT A GLANCE
Protocol summary
- Prepare samples in HHBS (0.5 mL/assay)
- Replace with HHBS
- Add Stain It™ V550 to the cell suspension
- Stain the cells at room temperature or 37°C for 20 - 60 minutes
- Wash the cells
- Fix the cells (optional)
- Examine the sample with flow cytometer and/or fluorescence microscope using the appropriate Excitation/Emission filter
Important notes
Thaw all the components at room temperature before starting the experiment.
PREPARATION OF STOCK SOLUTION
Unless otherwise noted, all unused stock solutions should be divided into single-use aliquots and stored at -20 °C after preparation. Avoid repeated freeze-thaw cycles.
1. Stain It™ V550 stock solution (500X):
Add 200 µL DMSO (Component B) into the vial of Stain It™ V550 (Component A) to have 500X Stain It™ V550 stock solution.
For guidelines on cell sample preparation, please visit
https://www.aatbio.com/resources/guides/cell-sample-preparation.html
SAMPLE EXPERIMENTAL PROTOCOL
Table 1. Fluorescence spectra properties and suggested excitation laser for flow cytometry analysis
Cat. # | Description | Ex (nm) | Em (nm) | Excitation Source |
22500 | Blue Fluorescence with 405 nm Excitation | 410 | 450 | 405 nm |
22501 | Green Fluorescence with 405 nm Excitation | 408 | 512 | 405 nm |
22502 | Orange Fluorescence with 405 nm Excitation | 398 | 550 | 405 nm |
22599 | Red Fluorescence Optimized for Flow Cytometry | 523 | 617 | 488 nm |
22600 | Blue Fluorescence | 353 | 442 | 335 nm |
22601 | Green Fluorescence | 498 | 521 | 488 nm |
22602 | Orange Fluorescence | 547 | 573 | 561 nm or 488 nm |
22603 | Red Fluorescence | 583 | 603 | 561 nm |
22604 | Deep Red Fluorescence | 649 | 660 | 633 nm |
22605 | Near Infrared Fluorescence | 749 | 775 | 633 nm |
- Prepare cells using 1X Hanks and 20 mM Hepes buffer (HHBS) or sodium azide-free and serum/protein-free buffer of your choice.
- Wash cells once with HHBS or the azide- and serum/protein-free buffer of your choice.
- Resuspend cells at 5 - 10 × 106/mL in HHBS or in the azide- and serum/protein-free buffer of your choice.
- Add 1 µL of 500X Stain It™ V550 stock solution to 0.5 mL of cells/assay and mix it well.
- Incubate at room temperature or 37°C, 5% CO2 incubator for 20 - 60 minutes, protected from light. Note: The optimal stain concentrations and incubation time should be experimentally determined for different cell lines.
- Wash cells twice and resuspend cells with HHBS or the buffer of your choice.
- Fix cells as desired (optional).
- Analyze cells with flow cytometer and/or fluorescence microscope using the appropriate Excitation/Emission filter (see Table 1).
Product Family
Name | Excitation (nm) | Emission (nm) |
Live or Dead™ Fixable Dead Cell Staining Kit *Blue Fluorescence with 405 nm Excitation* | 406 | 445 |
Live or Dead™ Fixable Dead Cell Staining Kit *Green Fluorescence with 405 nm Excitation* | 412 | 505 |
Images

Figure 1. Detection of Jurkat cell viability by Live or Dead™ Fixable Dead Cell Staining Kits (Cat# 22502). Jurkat cells were treated and stained with Stain It™ V550, and then fixed in 3.7% formaldehyde and analyzed by flow cytometry. Live (Red), staurosporine treated (Green) and heat-treated (Blue) cells were distinguished with Pacific Orange channel.
Citations
View all 3 citations: Citation Explorer
Autophagy proteins are not universally required for phagosome maturation
Authors: Cemma, Marija and Grinstein, Sergio and Brumell, John H
Journal: Autophagy (2016): 1440--1446
Authors: Cemma, Marija and Grinstein, Sergio and Brumell, John H
Journal: Autophagy (2016): 1440--1446
Differential detection of tumor cells using a combination of cell rolling, multivalent binding, and multiple antibodies
Authors: Myung, Ja Hye and Gajjar, Khyati A and Chen, Jihua and Molokie, Robert E and Hong, Seungpyo
Journal: Analytical chemistry (2014): 6088--6094
Authors: Myung, Ja Hye and Gajjar, Khyati A and Chen, Jihua and Molokie, Robert E and Hong, Seungpyo
Journal: Analytical chemistry (2014): 6088--6094
Versatile fabrication of nanoscale sol--gel bioactive glass particles for efficient bone tissue regeneration
Authors: Lei, Bo and Chen, Xiaofeng and Han, Xue and Zhou, Jiaan
Journal: Journal of Materials Chemistry (2012): 16906--16913
Authors: Lei, Bo and Chen, Xiaofeng and Han, Xue and Zhou, Jiaan
Journal: Journal of Materials Chemistry (2012): 16906--16913
References
View all 26 references: Citation Explorer
Requirements, features, and performance of high content screening platforms
Authors: Gough AH, Johnston PA.
Journal: Methods Mol Biol (2007): 41
Authors: Gough AH, Johnston PA.
Journal: Methods Mol Biol (2007): 41
A pharmaceutical company user's perspective on the potential of high content screening in drug discovery
Authors: Hoffman AF, Garippa RJ.
Journal: Methods Mol Biol (2007): 19
Authors: Hoffman AF, Garippa RJ.
Journal: Methods Mol Biol (2007): 19
Optimizing the integration of immunoreagents and fluorescent probes for multiplexed high content screening assays
Authors: Giuliano KA., undefined
Journal: Methods Mol Biol (2007): 189
Authors: Giuliano KA., undefined
Journal: Methods Mol Biol (2007): 189
Past, present, and future of high content screening and the field of cellomics
Authors: Taylor DL., undefined
Journal: Methods Mol Biol (2007): 3
Authors: Taylor DL., undefined
Journal: Methods Mol Biol (2007): 3
High-content fluorescence-based screening for epigenetic modulators
Authors: Martinez ED, Dull AB, Beutler JA, Hager GL.
Journal: Methods Enzymol (2006): 21
Authors: Martinez ED, Dull AB, Beutler JA, Hager GL.
Journal: Methods Enzymol (2006): 21
Application of laser-scanning fluorescence microplate cytometry in high content screening
Authors: Bowen WP, Wylie PG.
Journal: Assay Drug Dev Technol (2006): 209
Authors: Bowen WP, Wylie PG.
Journal: Assay Drug Dev Technol (2006): 209
High-content screening of known G protein-coupled receptors by arrestin translocation
Authors: Hudson CC, Oakley RH, Sjaastad MD, Loomis CR.
Journal: Methods Enzymol (2006): 63
Authors: Hudson CC, Oakley RH, Sjaastad MD, Loomis CR.
Journal: Methods Enzymol (2006): 63
Evaluation of a high-content screening fluorescence-based assay analyzing the pharmacological modulation of lipid homeostasis in human macrophages
Authors: Werner T, Liebisch G, Gr and l M, Schmitz G.
Journal: Cytometry A (2006): 200
Authors: Werner T, Liebisch G, Gr and l M, Schmitz G.
Journal: Cytometry A (2006): 200
Automated high content screening for phosphoinositide 3 kinase inhibition using an AKT 1 redistribution assay
Authors: Wolff M, Haasen D, Merk S, Kroner M, Maier U, Bordel S, Wiedenmann J, Nienhaus GU, Valler M, Heilker R.
Journal: Comb Chem High Throughput Screen (2006): 339
Authors: Wolff M, Haasen D, Merk S, Kroner M, Maier U, Bordel S, Wiedenmann J, Nienhaus GU, Valler M, Heilker R.
Journal: Comb Chem High Throughput Screen (2006): 339
High concordance of drug-induced human hepatotoxicity with in vitro cytotoxicity measured in a novel cell-based model using high content screening
Authors: O'Brien P J, Irwin W, Diaz D, Howard-Cofield E, Krejsa CM, Slaughter MR, Gao B, Kaludercic N, Angeline A, Bernardi P, Brain P, Hougham C.
Journal: Arch Toxicol (2006): 580
Authors: O'Brien P J, Irwin W, Diaz D, Howard-Cofield E, Krejsa CM, Slaughter MR, Gao B, Kaludercic N, Angeline A, Bernardi P, Brain P, Hougham C.
Journal: Arch Toxicol (2006): 580
Application notes
FAQ
AssayWise
Nucleic Acid Detection, Quantification and Imaging
A practical guide for use of PE and APC in flow cytometry
Fluorescent Phalloidin: A Practical Stain for Visualizing Actin Filaments
Intracellular pH Measurement with Dual Excitation Fluorescence Sensor BCFL
Power Styramide™ Signal Amplification a Superior Alternative to Tyramide Signal Amplification
A practical guide for use of PE and APC in flow cytometry
Fluorescent Phalloidin: A Practical Stain for Visualizing Actin Filaments
Intracellular pH Measurement with Dual Excitation Fluorescence Sensor BCFL
Power Styramide™ Signal Amplification a Superior Alternative to Tyramide Signal Amplification