logo
AAT Bioquest

Tide Quencher™ 7.1 CPG [TQ7.1 CPG] *1000 Å*

Product Image
Product Image
Gallery Image 1
Ordering information
Price
Catalog Number
Unit Size
Quantity
Add to cart
Additional ordering information
Telephone1-800-990-8053
Fax1-800-609-2943
Emailsales@aatbio.com
InternationalSee distributors
Bulk requestInquire
Custom sizeInquire
ShippingStandard overnight for United States, inquire for international
Request quotation
Physical properties
SolventMeCN
Storage, safety and handling
H-phraseH303, H313, H333
Hazard symbolXN
Intended useResearch Use Only (RUO)
R-phraseR20, R21, R22
StorageFreeze (< -15 °C); Minimize light exposure
Related products
Tide Quencher™ 2WS acid [TQ2WS acid]
Tide Quencher™ 2WS succinimidyl ester [TQ2WS, SE]
Tide Quencher™ 2WS maleimide [TQ2WS maleimide]
Tide Quencher™ 4WS acid [TQ4WS acid]
Tide Quencher™ 4WS amine [TQ4WS amine]
Tide Quencher™ 4 CPG [TQ4 CPG] *500 Å*
Tide Quencher™ 4 CPG [TQ4 CPG] *1000 Å*
Tide Quencher™ 4WS maleimide [TQ4WS maleimide]
Tide Quencher™ 4WS succinimidyl ester [TQ4WS SE]
Tide Quencher™ 4WS azide [TQ4WS azide]
Tide Quencher™ 4WS alkyne [TQ4WS alkyne]
Tide Quencher™ 5WS acid [TQ5WS acid]
Tide Quencher™ 5WS amine [TQ5WS amine]
Tide Quencher™ 5 CPG [TQ5 CPG] *500 Å*
Tide Quencher™ 5 CPG [TQ5 CPG] *1000 Å*
Tide Quencher™ 5WS maleimide [TQ5WS maleimide]
Tide Quencher™ 5WS succinimidyl ester [TQ5WS SE]
Tide Quencher™ 5WS alkyne [TQ5WS alkyne]
Tide Quencher™ 6WS acid [TQ6WS acid]
Tide Quencher™ 6WS amine [TQ6WS amine]
Tide Quencher™ 6WS maleimide [TQ6WS maleimide]
Tide Quencher™ 6WS succinimidyl ester [TQ6WS SE]
Tide Quencher™ 6WS azide [TQ6WS azide]
Tide Quencher™ 6WS alkyne [TQ6WS alkyne]
Tide Quencher™ 7WS acid [TQ7WS acid]
Tide Quencher™ 7WS amine [TQ7WS amine]
Tide Quencher™ 7WS maleimide [TQ7WS maleimide]
Tide Quencher™ 7WS succinimidyl ester [TQ7WS SE]
Tide Quencher™ 7WS alkyne [TQ7WS alkyne]
Tide Quencher™ 1 azide [TQ1 azide]
Tide Quencher™ 1 alkyne [TQ1 alkyne]
Tide Quencher™ 1 acid [TQ1 acid]
Tide Quencher™ 1 amine [TQ1 amine]
Tide Quencher™ 1 CPG [TQ1 CPG] *500 Å*
Tide Quencher™ 1 CPG [TQ1 CPG] *1000 Å*
Tide Quencher™ 1 maleimide [TQ1 maleimide]
Tide Quencher™ 1 phosphoramidite [TQ1 phosphoramidite]
Tide Quencher™ 1 succinimidyl ester [TQ1 SE]
Tide Quencher™ 2 acid [TQ2 acid]
Tide Quencher™ 2 amine [TQ2 amine]
Tide Quencher™ 2 CPG [TQ2 CPG] *500 Å*
Tide Quencher™ 2 CPG [TQ2 CPG] *1000 Å*
Tide Quencher™ 2 phosphoramidite [TQ2 phosphoramidite]
Tide Quencher™ 2 succinimidyl ester [TQ2 SE]
Tide Quencher™ 2 azide [TQ2 azide]
Tide Quencher™ 2 alkyne [TQ2 alkyne]
Tide Quencher™ 3 acid [TQ3 acid]
Tide Quencher™ 3 amine [TQ3 amine]
Tide Quencher™ 3 CPG [TQ3 CPG] *500 Å*
Tide Quencher™ 3 CPG [TQ3 CPG] *1000 Å*
Tide Quencher™ 3 maleimide [TQ3 maleimide]
Tide Quencher™ 3WS acid [TQ3WS acid]
Tide Quencher™ 3 phosphoramidite [TQ3 phosphoramidite]
Tide Quencher™ 3WS succinimidyl ester [TQ3WS SE]
Tide Quencher™ 3 succinimidyl ester [TQ3 SE]
Tide Quencher™ 3 azide [TQ3 azide]
Tide Quencher™ 3 alkyne [TQ3 alkyne]
Tide Quencher™ 2WS alkyne [TQ2WS alkyne]
Tide Quencher™ 4WS-DBCO [TQ4WS-DBCO]
Tide Quencher™ 5WS azide [TQ5WS azide]
Tide Quencher™ 7WS azide [TQ7WS azide]
Tide Quencher™ 5.1WS acid [TQ5.1WS acid]
Tide Quencher™ 5.1WS amine [TQ5.1WS amine]
Tide Quencher™ 5.1WS maleimide [TQ5.1WS maleimide]
Tide Quencher™ 5.1WS succinimidyl ester [TQ5.1WS SE]
Tide Quencher™ 5.1WS azide [TQ5.1WS azide]
Tide Quencher™ 5.1WS alkyne [TQ5.1WS alkyne]
Tide Quencher™ 7.1WS acid [TQ7.1WS acid]
Tide Quencher™ 7.1WS amine [TQ7.1WS amine]
Tide Quencher™ 7.1WS maleimide [TQ7.1WS maleimide]
Tide Quencher™ 7.1WS succinimidyl ester [TQ7.1WS SE]
Tide Quencher™ 7.1WS azide [TQ7.1WS azide]
Tide Quencher™ 7.1WS alkyne [TQ7.1WS alkyne]
Tide Quencher™ 7.2WS acid [TQ7.2WS acid]
Tide Quencher™ 7.2WS amine [TQ7.2WS amine]
Tide Quencher™ 7.2WS maleimide [TQ7.2WS maleimide]
Tide Quencher™ 7.2WS succinimidyl ester [TQ7.2WS SE]
Tide Quencher™ 7.2WS azide [TQ7.2WS azide]
Tide Quencher™ 7.2WS alkyne [TQ7.2WS alkyne]
Tide Quencher™ 8WS acid [TQ8WS acid]
Tide Quencher™ 8WS amine [TQ8WS amine]
Tide Quencher™ 8 CPG [TQ8 CPG] *500 Å*
Tide Quencher™ 8WS maleimide [TQ8WS maleimide]
Tide Quencher™ 8WS succinimidyl ester [TQ8WS SE]
Tide Quencher™ 8WS azide [TQ8WS azide]
Tide Quencher™ 8WS alkyne [TQ8WS alkyne]
Tide Quencher™ 8 CPG [TQ8 CPG] *1000 Å*
Tide Quencher™ 3WS maleimide [TQ3 maleimide]
Show More (78)

OverviewpdfSDSpdfProtocol


Tide Quencher™ 7.1 (TQ7.1) is a non-fluorescent molecule designed to efficiently quench the fluorescence of common NIR fluorophores such as Cy7, Alexa Fluor® 700, Alexa Fluor® 750, iFluor® 700, iFluor® 710, iFluor® 720 and iFluor® 750. It is an improved version of TQ7 and BHQ3. TQ7.1 is designed to be a superior quencher with (a). much stronger absorption, and (b). much higher quenching efficiency for NIR dyes. Tide Quencher™ 7.1 CPG is an excellent building block for preparing TQ7.1-labeled oligonucleotides. The oligo prepared from (TQ7.1 CPG) may be deprotected in 0.05M potassium carbonate in methanol for 4 hours at room temperature for 2 hours. Alternatively, the oligo may be deprotected in ammonium hydroxide at room temperature for 24-36 hours. It can be used in techniques such as polymerase chain reaction (PCR), real-time PCR, and DNA sequencing. In these applications, fluorescence signals are used to monitor the amplification or detection of specific DNA sequences. TQ7.1 quenches the fluorescent signal until a specific event (like DNA strand separation or primer extension) occurs, leading to an increase in fluorescence that can be detected and quantified.

Images


References


View all 16 references: Citation Explorer
FRET causing misleading signal from fluorescein excited by the violet laser in flow cytometry.
Authors: Waeckel, Louis and Khenine, Hana and Berger, Anne-Emmanuelle and Lambert, Claude
Journal: Cytometry. Part A : the journal of the International Society for Analytical Cytology (2023)
Stepwise Energy Transfer: Near-Infrared Persistent Luminescence from Doped Polymeric Systems.
Authors: Lin, Faxu and Wang, Haiyang and Cao, Yifeng and Yu, Rujun and Liang, Guodong and Huang, Huahua and Mu, Yingxiao and Yang, Zhiyong and Chi, Zhenguo
Journal: Advanced materials (Deerfield Beach, Fla.) (2022): e2108333
Fluorescent energy transfer causing misleading signal in multicolor flow cytometry.
Authors: Khenine, Hana and Waeckel, Louis and Seghrouchni, Fouad and Berger, Anne-Emmanuelle and Lambert, Claude
Journal: Cytometry. Part A : the journal of the International Society for Analytical Cytology (2021)
PI3KC3 complex subunit NRBF2 is required for apoptotic cell clearance to restrict intestinal inflammation.
Authors: Wu, Ming-Yue and Liu, Le and Wang, Er-Jin and Xiao, Hai-Tao and Cai, Cui-Zan and Wang, Jing and Su, Huanxing and Wang, Yitao and Tan, Jieqiong and Zhang, Zhuohua and Wang, Juan and Yao, Maojing and Ouyang, De-Fang and Yue, Zhenyu and Li, Min and Chen, Ye and Bian, Zhao-Xiang and Lu, Jia-Hong
Journal: Autophagy (2020): 1-16
Single-Molecule FRET Detection of Sub-Nanometer Distance Changes in the Range below a 3-Nanometer Scale.
Authors: Son, Heyjin and Mo, Woori and Park, Jaeil and Lee, Joong-Wook and Lee, Sanghwa
Journal: Biosensors (2020)
[Development of Novel Dark Quenchers and Their Application to Imaging Probes].
Authors: Hanaoka, Kenjiro
Journal: Yakugaku zasshi : Journal of the Pharmaceutical Society of Japan (2019): 277-283
Competition of Charge and Energy Transfer Processes in Donor-Acceptor Fluorescence Pairs: Calibrating the Spectroscopic Ruler.
Authors: Moroz, Pavel and Jin, Zhicheng and Sugiyama, Yuya and Lara, D'Andree and Razgoniaeva, Natalia and Yang, Mingrui and Kholmicheva, Natalia and Khon, Dmitriy and Mattoussi, Hedi and Zamkov, Mikhail
Journal: ACS nano (2018): 5657-5665
Bioorthogonally Applicable Fluorescence Deactivation Strategy for Receptor Kinetics Study and Theranostic Pretargeting Approaches.
Authors: van der Wal, Steffen and de Korne, Clarize M and Sand, Laurens G L and van Willigen, Danny M and Hogendoorn, Pancras C W and Szuhai, Karoly and van Leeuwen, Fijs W B and Buckle, Tessa
Journal: Chembiochem : a European journal of chemical biology (2018)
FRET Imaging of Enzyme-Responsive HPMA Copolymer Conjugate.
Authors: Zhang, Rui and Yang, Jiyuan and Radford, D Christopher and Fang, Yixin and Kopeček, Jindřich
Journal: Macromolecular bioscience (2017)
Development of a series of near-infrared dark quenchers based on Si-rhodamines and their application to fluorescent probes.
Authors: Myochin, Takuya and Hanaoka, Kenjiro and Iwaki, Shimpei and Ueno, Tasuku and Komatsu, Toru and Terai, Takuya and Nagano, Tetsuo and Urano, Yasuteru
Journal: Journal of the American Chemical Society (2015): 4759-65