logo
AAT Bioquest

Tide Quencher™ 7.1WS amine [TQ7.1WS amine]

Product Image
Product Image
Gallery Image 1
Ordering information
Price
Catalog Number
Unit Size
Quantity
Add to cart
Additional ordering information
Telephone1-800-990-8053
Fax1-800-609-2943
Emailsales@aatbio.com
InternationalSee distributors
Bulk requestInquire
Custom sizeInquire
ShippingStandard overnight for United States, inquire for international
Request quotation
Physical properties
Molecular weight1134.14
SolventDMSO
Storage, safety and handling
H-phraseH303, H313, H333
Hazard symbolXN
Intended useResearch Use Only (RUO)
R-phraseR20, R21, R22
StorageFreeze (< -15 °C); Minimize light exposure
Related products
Tide Quencher™ 2WS acid [TQ2WS acid]
Tide Quencher™ 2WS succinimidyl ester [TQ2WS, SE]
Tide Quencher™ 2WS maleimide [TQ2WS maleimide]
Tide Quencher™ 4WS acid [TQ4WS acid]
Tide Quencher™ 4WS amine [TQ4WS amine]
Tide Quencher™ 4 CPG [TQ4 CPG] *500 Å*
Tide Quencher™ 4 CPG [TQ4 CPG] *1000 Å*
Tide Quencher™ 4WS maleimide [TQ4WS maleimide]
Tide Quencher™ 4WS succinimidyl ester [TQ4WS SE]
Tide Quencher™ 4WS azide [TQ4WS azide]
Tide Quencher™ 4WS alkyne [TQ4WS alkyne]
Tide Quencher™ 5WS acid [TQ5WS acid]
Tide Quencher™ 5WS amine [TQ5WS amine]
Tide Quencher™ 5 CPG [TQ5 CPG] *500 Å*
Tide Quencher™ 5 CPG [TQ5 CPG] *1000 Å*
Tide Quencher™ 5WS maleimide [TQ5WS maleimide]
Tide Quencher™ 5WS succinimidyl ester [TQ5WS SE]
Tide Quencher™ 5WS alkyne [TQ5WS alkyne]
Tide Quencher™ 6WS acid [TQ6WS acid]
Tide Quencher™ 6WS amine [TQ6WS amine]
Tide Quencher™ 6WS maleimide [TQ6WS maleimide]
Tide Quencher™ 6WS succinimidyl ester [TQ6WS SE]
Tide Quencher™ 6WS azide [TQ6WS azide]
Tide Quencher™ 6WS alkyne [TQ6WS alkyne]
Tide Quencher™ 7WS acid [TQ7WS acid]
Tide Quencher™ 7WS amine [TQ7WS amine]
Tide Quencher™ 7WS maleimide [TQ7WS maleimide]
Tide Quencher™ 7WS succinimidyl ester [TQ7WS SE]
Tide Quencher™ 7WS alkyne [TQ7WS alkyne]
Tide Quencher™ 1 azide [TQ1 azide]
Tide Quencher™ 1 alkyne [TQ1 alkyne]
Tide Quencher™ 1 acid [TQ1 acid]
Tide Quencher™ 1 amine [TQ1 amine]
Tide Quencher™ 1 CPG [TQ1 CPG] *500 Å*
Tide Quencher™ 1 CPG [TQ1 CPG] *1000 Å*
Tide Quencher™ 1 maleimide [TQ1 maleimide]
Tide Quencher™ 1 phosphoramidite [TQ1 phosphoramidite]
Tide Quencher™ 1 succinimidyl ester [TQ1 SE]
Tide Quencher™ 2 acid [TQ2 acid]
Tide Quencher™ 2 amine [TQ2 amine]
Tide Quencher™ 2 CPG [TQ2 CPG] *500 Å*
Tide Quencher™ 2 CPG [TQ2 CPG] *1000 Å*
Tide Quencher™ 2 phosphoramidite [TQ2 phosphoramidite]
Tide Quencher™ 2 succinimidyl ester [TQ2 SE]
Tide Quencher™ 2 azide [TQ2 azide]
Tide Quencher™ 2 alkyne [TQ2 alkyne]
Tide Quencher™ 3 acid [TQ3 acid]
Tide Quencher™ 3 amine [TQ3 amine]
Tide Quencher™ 3 CPG [TQ3 CPG] *500 Å*
Tide Quencher™ 3 CPG [TQ3 CPG] *1000 Å*
Tide Quencher™ 3 maleimide [TQ3 maleimide]
Tide Quencher™ 3WS acid [TQ3WS acid]
Tide Quencher™ 3 phosphoramidite [TQ3 phosphoramidite]
Tide Quencher™ 3WS succinimidyl ester [TQ3WS SE]
Tide Quencher™ 3 succinimidyl ester [TQ3 SE]
Tide Quencher™ 3 azide [TQ3 azide]
Tide Quencher™ 3 alkyne [TQ3 alkyne]
Tide Quencher™ 2WS alkyne [TQ2WS alkyne]
Tide Quencher™ 4WS-DBCO [TQ4WS-DBCO]
Tide Quencher™ 5WS azide [TQ5WS azide]
Tide Quencher™ 7WS azide [TQ7WS azide]
Tide Quencher™ 5.1WS acid [TQ5.1WS acid]
Tide Quencher™ 5.1 CPG [TQ5.1 CPG] *500 Å*
Tide Quencher™ 5.1 CPG [TQ5.1 CPG] *1000 Å*
Tide Quencher™ 5.1WS maleimide [TQ5.1WS maleimide]
Tide Quencher™ 5.1WS succinimidyl ester [TQ5.1WS SE]
Tide Quencher™ 5.1WS azide [TQ5.1WS azide]
Tide Quencher™ 5.1WS alkyne [TQ5.1WS alkyne]
Tide Quencher™ 7.1 CPG [TQ7.1 CPG] *500 Å*
Tide Quencher™ 7.1 CPG [TQ7.1 CPG] *1000 Å*
Tide Quencher™ 7.1WS succinimidyl ester [TQ7.1WS SE]
Tide Quencher™ 7.2WS acid [TQ7.2WS acid]
Tide Quencher™ 7.2 CPG [TQ7.2 CPG] *500 Å*
Tide Quencher™ 7.2 CPG [TQ7.2 CPG] *1000 Å*
Tide Quencher™ 7.2WS maleimide [TQ7.2WS maleimide]
Tide Quencher™ 7.2WS succinimidyl ester [TQ7.2WS SE]
Tide Quencher™ 7.2WS azide [TQ7.2WS azide]
Tide Quencher™ 7.2WS alkyne [TQ7.2WS alkyne]
Tide Quencher™ 8WS acid [TQ8WS acid]
Tide Quencher™ 8WS amine [TQ8WS amine]
Tide Quencher™ 8 CPG [TQ8 CPG] *500 Å*
Tide Quencher™ 8WS maleimide [TQ8WS maleimide]
Tide Quencher™ 8WS succinimidyl ester [TQ8WS SE]
Tide Quencher™ 8WS azide [TQ8WS azide]
Tide Quencher™ 8WS alkyne [TQ8WS alkyne]
Tide Quencher™ 8 CPG [TQ8 CPG] *1000 Å*
Tide Quencher™ 3WS maleimide [TQ3 maleimide]
Show More (77)

OverviewpdfSDSpdfProtocol


Molecular weight
1134.14
Tide Quencher™ 7.1WS (TQ7.1WS) is a non-fluorescent molecule designed to efficiently quench the fluorescence of common NIR fluorophores such as Cy7, Alexa Fluor® 700, Alexa Fluor® 750, iFluor® 700, iFluor® 710, iFluor® 720 and iFluor® 750. It is an improved version of TQ7 and BHQ3. TQ7.1WS is designed to be a superior quencher with (a). much stronger absorption, and (b). much higher quenching efficiency for NIR dyes. Tide Quencher™ 7.1WS amine is primarily used for labeling biomolecules that contain a carbonyl group. It can be used in techniques such as polymerase chain reaction (PCR), real-time PCR, and DNA sequencing. In these applications, fluorescence signals are used to monitor the amplification or detection of specific DNA sequences. TQ7.1WS quenches the fluorescent signal until a specific event (like DNA strand separation or primer extension) occurs, leading to an increase in fluorescence that can be detected and quantified. Fluorescence resonance energy transfer (FRET)-based assays are widely used to detect and measure the presence of specific molecules in a sample. They involve the use of a fluorescent molecule (fluorophore) and a quencher molecule such as TQ7.1WS. The fluorophore emits light when excited by a specific wavelength of light, while the quencher molecule absorbs this emitted light, effectively "quenching" the fluorescence signal.

Calculators


Common stock solution preparation

Table 1. Volume of DMSO needed to reconstitute specific mass of Tide Quencher™ 7.1WS amine [TQ7.1WS amine] to given concentration. Note that volume is only for preparing stock solution. Refer to sample experimental protocol for appropriate experimental/physiological buffers.

0.1 mg0.5 mg1 mg5 mg10 mg
1 mM88.173 µL440.863 µL881.725 µL4.409 mL8.817 mL
5 mM17.635 µL88.173 µL176.345 µL881.725 µL1.763 mL
10 mM8.817 µL44.086 µL88.173 µL440.863 µL881.725 µL

Molarity calculator

Enter any two values (mass, volume, concentration) to calculate the third.

Mass (Calculate)Molecular weightVolume (Calculate)Concentration (Calculate)Moles
/=x=

Images


References


View all 13 references: Citation Explorer
A Selenium-Substituted Heptamethine Cyanine Photosensitizer for Near-Infrared Photodynamic Therapy.
Authors: Sun, Jinghan and Feng, Erting and Shao, Yutong and Lv, Fangyuan and Wu, Yingnan and Tian, Jiarui and Sun, Han and Song, Fengling
Journal: Chembiochem : a European journal of chemical biology (2022): e202200421
Eradication of solid tumors by chemodynamic theranostics with H2O2-catalyzed hydroxyl radical burst.
Authors: Wang, Nana and Zeng, Qin and Zhang, Ruijing and Xing, Da and Zhang, Tao
Journal: Theranostics (2021): 2334-2348
Targeted antimicrobial peptide delivery in vivo to tumor with near infrared photoactivated mesoporous silica nanoparticles.
Authors: Dong, Weibing and Wen, Jia and Li, Yue and Wang, Cui and Sun, Shiguo and Shang, Dejing
Journal: International journal of pharmaceutics (2020): 119767
Supramolecular Nanodiscs Self-Assembled from Non-Ionic Heptamethine Cyanine for Imaging-Guided Cancer Photothermal Therapy.
Authors: Mu, Xueluer and Lu, Yingxi and Wu, Fapu and Wei, Yuhan and Ma, Huihui and Zhao, Yingjie and Sun, Jing and Liu, Shaofeng and Zhou, Xianfeng and Li, Zhibo
Journal: Advanced materials (Deerfield Beach, Fla.) (2020): e1906711
Evaluation of COC183B2 antibody targeting ovarian cancer by near-infrared fluorescence imaging.
Authors: Zhang, Chen and Ling, Xinyu and Guo, Yanxiu and Yuan, Cunzhong and Cheng, Hongyan and Ye, Xue and Ma, Ruiqiong and Zhang, Yinli and Li, Yi and Chang, Xiaohong and Kong, Beihua and Liu, Tao and Cui, Heng
Journal: Chinese journal of cancer research = Chung-kuo yen cheng yen chiu (2019): 673-685
PEGylated cyanine dye nanoparticles as photothermal agents for mosquito and cancer cell control.
Authors: Xu, Qi and Shen, Yujun and Zhang, Yongchao and Shao, Xusheng
Journal: Bioorganic & medicinal chemistry letters (2019): 2398-2404
Mesenchymal stromal cell-derived nanovesicles ameliorate bacterial outer membrane vesicle-induced sepsis via IL-10.
Authors: Park, Kyong-Su and Svennerholm, Kristina and Shelke, Ganesh V and Bandeira, Elga and Lässer, Cecilia and Jang, Su Chul and Chandode, Rakesh and Gribonika, Inta and Lötvall, Jan
Journal: Stem cell research & therapy (2019): 231
Oridonin-loaded and GPC1-targeted gold nanoparticles for multimodal imaging and therapy in pancreatic cancer.
Authors: Qiu, Wenli and Chen, Rong and Chen, Xiao and Zhang, Huifeng and Song, Lina and Cui, Wenjing and Zhang, Jingjing and Ye, Dandan and Zhang, Yifen and Wang, Zhongqiu
Journal: International journal of nanomedicine (2018): 6809-6827
A Fluorescent Cy7-Mercaptopyridine for the Selective Detection of Glutathione over Homocysteine and Cysteine.
Authors: Yoon, Shin A and Kim, Wantae and Sharma, Amit and Verwilst, Peter and Won, Miae and Lee, Min Hee
Journal: Sensors (Basel, Switzerland) (2018)
Achieving effective terminal exciton delivery in quantum dot antenna-sensitized multistep DNA photonic wires.
Authors: Spillmann, Christopher M and Ancona, Mario G and Buckhout-White, Susan and Algar, W Russ and Stewart, Michael H and Susumu, Kimihiro and Huston, Alan L and Goldman, Ellen R and Medintz, Igor L
Journal: ACS nano (2013): 7101-18