logo
AAT Bioquest

Tide Quencher™ 5.1WS acid [TQ5.1WS acid]

Tide Quencher™ 5.1WS (TQ5.1WS) is a non-fluorescent molecule designed to efficiently quench the fluorescence of common NIR fluorophores such as Cy5, Cy5.5, Alexa Fluor® 647, Alexa Fluor® 647, iFluor® 647 and iFluor® 680. It is an improved version of TQ5 and QSY 21 and BHQ3).
Tide Quencher™ 5.1WS (TQ5.1WS) is a non-fluorescent molecule designed to efficiently quench the fluorescence of common NIR fluorophores such as Cy5, Cy5.5, Alexa Fluor® 647, Alexa Fluor® 647, iFluor® 647 and iFluor® 680. It is an improved version of TQ5 and QSY 21 and BHQ3).
Tide Quencher™ 5.1WS (TQ5.1WS) is a non-fluorescent molecule designed to efficiently quench the fluorescence of common NIR fluorophores such as Cy5, Cy5.5, Alexa Fluor® 647, Alexa Fluor® 647, iFluor® 647 and iFluor® 680. It is an improved version of TQ5 and QSY 21 and BHQ3).
Ordering information
Price
Catalog Number
Unit Size
Quantity
Add to cart
Additional ordering information
Telephone1-800-990-8053
Fax1-800-609-2943
Emailsales@aatbio.com
InternationalSee distributors
Bulk requestInquire
Custom sizeInquire
ShippingStandard overnight for United States, inquire for international
Request quotation
Physical properties
Molecular weight952.00
SolventDMSO
Storage, safety and handling
H-phraseH303, H313, H333
Hazard symbolXN
Intended useResearch Use Only (RUO)
R-phraseR20, R21, R22
StorageFreeze (< -15 °C); Minimize light exposure
Related products
Tide Quencher™ 2WS acid [TQ2WS acid]
Tide Quencher™ 2WS succinimidyl ester [TQ2WS, SE]
Tide Quencher™ 2WS maleimide [TQ2WS maleimide]
Tide Quencher™ 4WS acid [TQ4WS acid]
Tide Quencher™ 4WS amine [TQ4WS amine]
Tide Quencher™ 4 CPG [TQ4 CPG] *500 Å*
Tide Quencher™ 4 CPG [TQ4 CPG] *1000 Å*
Tide Quencher™ 4WS maleimide [TQ4WS maleimide]
Tide Quencher™ 4WS succinimidyl ester [TQ4WS SE]
Tide Quencher™ 4WS azide [TQ4WS azide]
Tide Quencher™ 4WS alkyne [TQ4WS alkyne]
Tide Quencher™ 5WS acid [TQ5WS acid]
Tide Quencher™ 5WS amine [TQ5WS amine]
Tide Quencher™ 5 CPG [TQ5 CPG] *500 Å*
Tide Quencher™ 5 CPG [TQ5 CPG] *1000 Å*
Tide Quencher™ 5WS maleimide [TQ5WS maleimide]
Tide Quencher™ 5WS succinimidyl ester [TQ5WS SE]
Tide Quencher™ 5WS alkyne [TQ5WS alkyne]
Tide Quencher™ 6WS acid [TQ6WS acid]
Tide Quencher™ 6WS amine [TQ6WS amine]
Tide Quencher™ 6WS maleimide [TQ6WS maleimide]
Tide Quencher™ 6WS succinimidyl ester [TQ6WS SE]
Tide Quencher™ 6WS azide [TQ6WS azide]
Tide Quencher™ 6WS alkyne [TQ6WS alkyne]
Tide Quencher™ 7WS acid [TQ7WS acid]
Tide Quencher™ 7WS amine [TQ7WS amine]
Tide Quencher™ 7WS maleimide [TQ7WS maleimide]
Tide Quencher™ 7WS succinimidyl ester [TQ7WS SE]
Tide Quencher™ 7WS alkyne [TQ7WS alkyne]
Tide Quencher™ 1 azide [TQ1 azide]
Tide Quencher™ 1 alkyne [TQ1 alkyne]
Tide Quencher™ 1 acid [TQ1 acid]
Tide Quencher™ 1 amine [TQ1 amine]
Tide Quencher™ 1 CPG [TQ1 CPG] *500 Å*
Tide Quencher™ 1 CPG [TQ1 CPG] *1000 Å*
Tide Quencher™ 1 maleimide [TQ1 maleimide]
Tide Quencher™ 1 phosphoramidite [TQ1 phosphoramidite]
Tide Quencher™ 1 succinimidyl ester [TQ1 SE]
Tide Quencher™ 2 acid [TQ2 acid]
Tide Quencher™ 2 amine [TQ2 amine]
Tide Quencher™ 2 CPG [TQ2 CPG] *500 Å*
Tide Quencher™ 2 CPG [TQ2 CPG] *1000 Å*
Tide Quencher™ 2 phosphoramidite [TQ2 phosphoramidite]
Tide Quencher™ 2 succinimidyl ester [TQ2 SE]
Tide Quencher™ 2 azide [TQ2 azide]
Tide Quencher™ 2 alkyne [TQ2 alkyne]
Tide Quencher™ 3 acid [TQ3 acid]
Tide Quencher™ 3 amine [TQ3 amine]
Tide Quencher™ 3 CPG [TQ3 CPG] *500 Å*
Tide Quencher™ 3 CPG [TQ3 CPG] *1000 Å*
Tide Quencher™ 3 maleimide [TQ3 maleimide]
Tide Quencher™ 3WS acid [TQ3WS acid]
Tide Quencher™ 3 phosphoramidite [TQ3 phosphoramidite]
Tide Quencher™ 3WS succinimidyl ester [TQ3WS SE]
Tide Quencher™ 3 succinimidyl ester [TQ3 SE]
Tide Quencher™ 3 azide [TQ3 azide]
Tide Quencher™ 3 alkyne [TQ3 alkyne]
Tide Quencher™ 2WS alkyne [TQ2WS alkyne]
Tide Quencher™ 4WS-DBCO [TQ4WS-DBCO]
Tide Quencher™ 5WS azide [TQ5WS azide]
Tide Quencher™ 7WS azide [TQ7WS azide]
Tide Quencher™ 5.1 CPG [TQ5.1 CPG] *500 Å*
Tide Quencher™ 5.1 CPG [TQ5.1 CPG] *1000 Å*
Tide Quencher™ 5.1WS succinimidyl ester [TQ5.1WS SE]
Tide Quencher™ 7.1WS amine [TQ7.1WS amine]
Tide Quencher™ 7.1 CPG [TQ7.1 CPG] *500 Å*
Tide Quencher™ 7.1 CPG [TQ7.1 CPG] *1000 Å*
Tide Quencher™ 7.1WS maleimide [TQ7.1WS maleimide]
Tide Quencher™ 7.1WS succinimidyl ester [TQ7.1WS SE]
Tide Quencher™ 7.1WS azide [TQ7.1WS azide]
Tide Quencher™ 7.1WS alkyne [TQ7.1WS alkyne]
Tide Quencher™ 7.2WS acid [TQ7.2WS acid]
Tide Quencher™ 7.2WS amine [TQ7.2WS amine]
Tide Quencher™ 7.2 CPG [TQ7.2 CPG] *500 Å*
Tide Quencher™ 7.2 CPG [TQ7.2 CPG] *1000 Å*
Tide Quencher™ 7.2WS maleimide [TQ7.2WS maleimide]
Tide Quencher™ 7.2WS succinimidyl ester [TQ7.2WS SE]
Tide Quencher™ 7.2WS azide [TQ7.2WS azide]
Tide Quencher™ 7.2WS alkyne [TQ7.2WS alkyne]
Tide Quencher™ 8WS acid [TQ8WS acid]
Tide Quencher™ 8WS amine [TQ8WS amine]
Tide Quencher™ 8 CPG [TQ8 CPG] *500 Å*
Tide Quencher™ 8WS maleimide [TQ8WS maleimide]
Tide Quencher™ 8WS succinimidyl ester [TQ8WS SE]
Tide Quencher™ 8WS azide [TQ8WS azide]
Tide Quencher™ 8WS alkyne [TQ8WS alkyne]
Tide Quencher™ 8 CPG [TQ8 CPG] *1000 Å*
Tide Quencher™ 3WS maleimide [TQ3 maleimide]
Show More (78)

OverviewpdfSDSpdfProtocol


Molecular weight
952.00
Tide Quencher™ 5.1WS (TQ5.1WS) is a non-fluorescent molecule designed to efficiently quench the fluorescence of common NIR fluorophores such as Cy5, Cy5.5, Alexa Fluor® 647, Alexa Fluor® 647, iFluor® 647 and iFluor® 680. It is an improved version of TQ5 and QSY 21 and BHQ3). TQ5.1WS is designed to be a superior quencher with (a). much stronger absorption, and (b). much higher quenching efficiency. Tide Quencher™ 5.1WS acid is primarily used for labeling amino-modified oligonucleotides and peptides. It can be used in techniques such as polymerase chain reaction (PCR), real-time PCR, and DNA sequencing. In these applications, fluorescence signals are used to monitor the amplification or detection of specific DNA sequences. TQ5.1WS quenches the fluorescent signal until a specific event (like DNA strand separation or primer extension) occurs, leading to an increase in fluorescence that can be detected and quantified. Fluorescence resonance energy transfer (FRET)-based assays are widely used to detect and measure the presence of specific molecules in a sample. They involve the use of a fluorescent molecule (fluorophore) and a quencher molecule such as TQ5.1WS. The fluorophore emits light when excited by a specific wavelength of light, while the quencher molecule absorbs this emitted light, effectively "quenching" the fluorescence signal.

Calculators


Common stock solution preparation

Table 1. Volume of DMSO needed to reconstitute specific mass of Tide Quencher™ 5.1WS acid [TQ5.1WS acid] to given concentration. Note that volume is only for preparing stock solution. Refer to sample experimental protocol for appropriate experimental/physiological buffers.

0.1 mg0.5 mg1 mg5 mg10 mg
1 mM105.042 µL525.21 µL1.05 mL5.252 mL10.504 mL
5 mM21.008 µL105.042 µL210.084 µL1.05 mL2.101 mL
10 mM10.504 µL52.521 µL105.042 µL525.21 µL1.05 mL

Molarity calculator

Enter any two values (mass, volume, concentration) to calculate the third.

Mass (Calculate)Molecular weightVolume (Calculate)Concentration (Calculate)Moles
/=x=

Images


References


View all 50 references: Citation Explorer
Evaluation of probe-based ultra-sensitive detection of miRNA using a single-molecule fluorescence imaging method: miR-126 used as the model.
Authors: Liu, Longkai and Wang, Xiaoning and Li, Yan and Liu, Jianwei
Journal: Frontiers in bioengineering and biotechnology (2023): 1081488
Synthesis of Multifunctional Polymersomes Prepared by Polymerization-Induced Self-Assembly.
Authors: Phan, Hien and Cavanagh, Robert and Jacob, Philippa and Destouches, Damien and Vacherot, Francis and Brugnoli, Benedetta and Howdle, Steve and Taresco, Vincenzo and Couturaud, Benoit
Journal: Polymers (2023)
Tuning the Polarity of Antibiotic-Cy5 Conjugates Enables Highly Selective Labeling of Binding Sites.
Authors: Graßl, Fabian and Konrad, Maike M B and Krüll, Jasmin and Pezerovic, Azra and Zähnle, Leon and Burkovski, Andreas and Heinrich, Markus R
Journal: Chemistry (Weinheim an der Bergstrasse, Germany) (2023): e202301208
Highly sensitive and selective antibody microarrays based on a Cy5-antibody complexes coupling ES-biochip for E. coli and Salmonella detection.
Authors: Hormsombut, Timpika and Rijiravanich, Patsamon and Surareungchai, Werasak and Kalasin, Surachate
Journal: RSC advances (2022): 24760-24768
Repurposing an atherosclerosis targeting peptide for tumor imaging.
Authors: Kovacs, Luciana and Davis, Ryan A and Ganguly, Tanushree and Chammas, Roger and Sutcliffe, Julie L
Journal: Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie (2022): 112469
Incoherent broadband cavity-enhanced absorption spectroscopy for sensitive measurement of nutrients and microalgae.
Authors: Zhang, Haodong and Luo, Jing and Hou, Saimei and Xu, Zhanpeng and Evans, Julian and He, Sailing
Journal: Applied optics (2022): 3400-3408
Small molecule based EGFR targeting of biodegradable nanoparticles containing temozolomide and Cy5 dye for greatly enhanced image-guided glioblastoma therapy.
Authors: Schmitt, Rebecca R and Mahajan, Supriya D and Pliss, Artem and Prasad, Paras N
Journal: Nanomedicine : nanotechnology, biology, and medicine (2022): 102513
Water-powered self-propelled magnetic nanobot for rapid and highly efficient capture of circulating tumor cells.
Authors: Wavhale, Ravindra D and Dhobale, Kshama D and Rahane, Chinmay S and Chate, Govind P and Tawade, Bhausaheb V and Patil, Yuvraj N and Gawade, Sandesh S and Banerjee, Shashwat S
Journal: Communications chemistry (2021): 159
Nucleic Acid-Gated Covalent Organic Frameworks for Cancer-Specific Imaging and Drug Release.
Authors: Gao, Peng and Shen, Xiaoying and Liu, Xiaohan and Chen, Yuanyuan and Pan, Wei and Li, Na and Tang, Bo
Journal: Analytical chemistry (2021): 11751-11757
Near-Infrared Bioluminescence Imaging of Animal Cells with Through-Bond Energy Transfer Cassette.
Authors: Abe, Masahiro and Nishihara, Ryo and Kim, Sung-Bae and Suzuki, Koji
Journal: Methods in molecular biology (Clifton, N.J.) (2021): 103-110