QXY7 NHS ester [equivalent to QSY-7 NHS ester]
Ordering information
Price | |
Catalog Number | |
Unit Size | |
Quantity |
Additional ordering information
Telephone | 1-800-990-8053 |
Fax | 1-800-609-2943 |
sales@aatbio.com | |
International | See distributors |
Bulk request | Inquire |
Custom size | Inquire |
Shipping | Standard overnight for United States, inquire for international |
Physical properties
Molecular weight | 791.32 |
Solvent | DMSO |
Spectral properties
Absorbance (nm) | 561 |
Correction Factor (280 nm) | 0.22 |
Extinction coefficient (cm -1 M -1) | 900001 |
Storage, safety and handling
H-phrase | H303, H313, H333 |
Hazard symbol | XN |
Intended use | Research Use Only (RUO) |
R-phrase | R20, R21, R22 |
Storage | Freeze (< -15 °C); Minimize light exposure |
UNSPSC | 12171501 |
Overview | ![]() ![]() |
Molecular weight 791.32 | Absorbance (nm) 561 | Correction Factor (280 nm) 0.22 | Extinction coefficient (cm -1 M -1) 900001 |
QXY7 is the same molecule to QSY-7 acid (ThermoFisher). QXY7 has a broad and intense absorption at ~550 nm maxima with no detectable fluorescence, making it useful as an acceptor in fluorescence resonance energy transfer (FRET) applications paring with Cy3, TAMRA, Alexa Fluor 555 and iFluor 647 or other spectrally similar fluorescent dyes. QXY7 NHS ester is quite stable and readily reacts with amino-containing molecules such as amino-modified oligos, proteins and peptides.
Calculators
Common stock solution preparation
Table 1. Volume of DMSO needed to reconstitute specific mass of QXY7 NHS ester [equivalent to QSY-7 NHS ester] to given concentration. Note that volume is only for preparing stock solution. Refer to sample experimental protocol for appropriate experimental/physiological buffers.
0.1 mg | 0.5 mg | 1 mg | 5 mg | 10 mg | |
1 mM | 126.371 µL | 631.856 µL | 1.264 mL | 6.319 mL | 12.637 mL |
5 mM | 25.274 µL | 126.371 µL | 252.742 µL | 1.264 mL | 2.527 mL |
10 mM | 12.637 µL | 63.186 µL | 126.371 µL | 631.856 µL | 1.264 mL |
Molarity calculator
Enter any two values (mass, volume, concentration) to calculate the third.
Mass (Calculate) | Molecular weight | Volume (Calculate) | Concentration (Calculate) | Moles | ||||
/ | = | x | = |
Spectrum
Open in Advanced Spectrum Viewer


Spectral properties
Absorbance (nm) | 561 |
Correction Factor (280 nm) | 0.22 |
Extinction coefficient (cm -1 M -1) | 900001 |
Product Family
Name | Excitation (nm) | Emission (nm) | Extinction coefficient (cm -1 M -1) | Quantum yield | Correction Factor (260 nm) | Correction Factor (280 nm) |
XFD488 NHS Ester *Same Structure to Alexa Fluor™ 488 NHS Ester* | 499 | 520 | 71000 | 0.921 | 0.30 | 0.11 |
XFD350 NHS Ester *Same Structure to Alexa Fluor™ 350 NHS Ester* | 343 | 441 | 19000 | - | 0.25 | 0.19 |
XFD532 NHS Ester *Same Structure to Alexa Fluor™ 532 NHS Ester* | 534 | 553 | 81000 | 0.611 | 0.24 | 0.09 |
XFD594 NHS Ester *Same Structure to Alexa Fluor™ 594 NHS Ester* | 590 | 618 | 90000 | 0.661 | 0.43 | 0.56 |
QXY21 NHS ester [equivalent to QSY-21 NHS ester] | - | - | 890001 | - | - | 0.32 |
XFD555 NHS Ester *Same Structure to Alexa Fluor™ 555 NHS Ester* | 553 | 568 | 150000 | 0.11 | 0.08 | 0.08 |
XFD647 NHS Ester *Same Structure to Alexa Fluor™ 647 NHS Ester* | 650 | 671 | 239000 | 0.331 | 0.00 | 0.03 |
XFD680 NHS Ester *Same Structure to Alexa Fluor™ 680 NHS Ester* | 681 | 704 | 184000 | 0.361 | 0.00 | 0.05 |
XFD700 NHS Ester *Same Structure to Alexa Fluor™ 700 NHS Ester* | 696 | 719 | 192000 | 0.251 | 0.00 | 0.07 |
Show More (8) |
References
View all 11 references: Citation Explorer
[Development of Novel Dark Quenchers and Their Application to Imaging Probes].
Authors: Hanaoka, Kenjiro
Journal: Yakugaku zasshi : Journal of the Pharmaceutical Society of Japan (2019): 277-283
Authors: Hanaoka, Kenjiro
Journal: Yakugaku zasshi : Journal of the Pharmaceutical Society of Japan (2019): 277-283
A real-time in vitro assay to evaluate the release of macromolecules from liposomes.
Authors: Mujoo, Himang and Reynolds, John N J and Tucker, Ian G
Journal: Drug testing and analysis (2018): 1025-1032
Authors: Mujoo, Himang and Reynolds, John N J and Tucker, Ian G
Journal: Drug testing and analysis (2018): 1025-1032
Structural exploration and Förster theory modeling for the interpretation of gas-phase FRET measurements: Chromophore-grafted amyloid-β peptides.
Authors: Kulesza, Alexander and Daly, Steven and MacAleese, Luke and Antoine, Rodolphe and Dugourd, Philippe
Journal: The Journal of chemical physics (2015): 025101
Authors: Kulesza, Alexander and Daly, Steven and MacAleese, Luke and Antoine, Rodolphe and Dugourd, Philippe
Journal: The Journal of chemical physics (2015): 025101
Action-FRET: probing the molecular conformation of mass-selected gas-phase peptides with Förster resonance energy transfer detected by acceptor-specific fragmentation.
Authors: Daly, Steven and Poussigue, Frédéric and Simon, Anne-Laure and MacAleese, Luke and Bertorelle, Franck and Chirot, Fabien and Antoine, Rodolphe and Dugourd, Philippe
Journal: Analytical chemistry (2014): 8798-804
Authors: Daly, Steven and Poussigue, Frédéric and Simon, Anne-Laure and MacAleese, Luke and Bertorelle, Franck and Chirot, Fabien and Antoine, Rodolphe and Dugourd, Philippe
Journal: Analytical chemistry (2014): 8798-804
Reversible off-on fluorescence probe for hypoxia and imaging of hypoxia-normoxia cycles in live cells.
Authors: Takahashi, Shodai and Piao, Wen and Matsumura, Yuriko and Komatsu, Toru and Ueno, Tasuku and Terai, Takuya and Kamachi, Toshiaki and Kohno, Masahiro and Nagano, Tetsuo and Hanaoka, Kenjiro
Journal: Journal of the American Chemical Society (2012): 19588-91
Authors: Takahashi, Shodai and Piao, Wen and Matsumura, Yuriko and Komatsu, Toru and Ueno, Tasuku and Terai, Takuya and Kamachi, Toshiaki and Kohno, Masahiro and Nagano, Tetsuo and Hanaoka, Kenjiro
Journal: Journal of the American Chemical Society (2012): 19588-91
Tumor-specific detection of an optically targeted antibody combined with a quencher-conjugated neutravidin "quencher-chaser": a dual "quench and chase" strategy to improve target to nontarget ratios for molecular imaging of cancer.
Authors: Ogawa, Mikako and Kosaka, Nobuyuki and Choyke, Peter L and Kobayashi, Hisataka
Journal: Bioconjugate chemistry (2009): 147-54
Authors: Ogawa, Mikako and Kosaka, Nobuyuki and Choyke, Peter L and Kobayashi, Hisataka
Journal: Bioconjugate chemistry (2009): 147-54
Near-infrared fluorescent oligodeoxyribonucleotide reporters for sensing NF-kappaB DNA interactions in vitro.
Authors: Zhang, Surong and Metelev, Valeri and Tabatadze, David and Zamecnik, Paul and Bogdanov, Alexei
Journal: Oligonucleotides (2008): 235-43
Authors: Zhang, Surong and Metelev, Valeri and Tabatadze, David and Zamecnik, Paul and Bogdanov, Alexei
Journal: Oligonucleotides (2008): 235-43
Fluorescence-based sensing of glucose using engineered glucose/galactose-binding protein: a comparison of fluorescence resonance energy transfer and environmentally sensitive dye labelling strategies.
Authors: Khan, Faaizah and Gnudi, Luigi and Pickup, John C
Journal: Biochemical and biophysical research communications (2008): 102-6
Authors: Khan, Faaizah and Gnudi, Luigi and Pickup, John C
Journal: Biochemical and biophysical research communications (2008): 102-6
A time-resolved, internally quenched fluorescence assay to characterize inhibition of hepatitis C virus nonstructural protein 3-4A protease at low enzyme concentrations.
Authors: Mao, Shi-Shan and DiMuzio, Jillian and McHale, Carolyn and Burlein, Christine and Olsen, David and Carroll, Steven S
Journal: Analytical biochemistry (2008): 1-8
Authors: Mao, Shi-Shan and DiMuzio, Jillian and McHale, Carolyn and Burlein, Christine and Olsen, David and Carroll, Steven S
Journal: Analytical biochemistry (2008): 1-8
Longer wavelength fluorescence resonance energy transfer depsipeptide substrates for hepatitis C virus NS3 protease.
Authors: Konstantinidis, Alex K and Richardson, Paul L and Kurtz, Kevin A and Tripathi, Rakesh and Chen, Chih-Ming and Huang, Peggy and Randolph, John and Towne, Danli and Donnelly, Jennifer and Warrior, Usha and Middleton, Tim and Kati, Warren M
Journal: Analytical biochemistry (2007): 156-67
Authors: Konstantinidis, Alex K and Richardson, Paul L and Kurtz, Kevin A and Tripathi, Rakesh and Chen, Chih-Ming and Huang, Peggy and Randolph, John and Towne, Danli and Donnelly, Jennifer and Warrior, Usha and Middleton, Tim and Kati, Warren M
Journal: Analytical biochemistry (2007): 156-67
Application notes
A New Protein Crosslinking Method for Labeling and Modifying Antibodies
Abbreviation of Common Chemical Compounds Related to Peptides
Bright Tide Fluor™-Based Fluorescent Peptides and Their Applications In Drug Discovery and Disease Diagnosis
FITC (Fluorescein isothiocyanate)
Fluorescein isothiocyanate (FITC)
Abbreviation of Common Chemical Compounds Related to Peptides
Bright Tide Fluor™-Based Fluorescent Peptides and Their Applications In Drug Discovery and Disease Diagnosis
FITC (Fluorescein isothiocyanate)
Fluorescein isothiocyanate (FITC)