ReadiLink™ xtra Rapid Cy7 Antibody Labeling Kit *BSA-Compatible*
Ordering information
Price | |
Catalog Number | |
Unit Size | |
Quantity |
Additional ordering information
Telephone | 1-800-990-8053 |
Fax | 1-800-609-2943 |
sales@aatbio.com | |
International | See distributors |
Bulk request | Inquire |
Custom size | Inquire |
Shipping | Standard overnight for United States, inquire for international |
Spectral properties
Correction Factor (260 nm) | 0.05 |
Correction Factor (280 nm) | 0.036 |
Correction Factor (482 nm) | 0.0005 |
Correction Factor (565 nm) | 0.0193 |
Correction Factor (650 nm) | 0.165 |
Extinction coefficient (cm -1 M -1) | 250000 |
Excitation (nm) | 756 |
Emission (nm) | 779 |
Quantum yield | 0.3 |
Storage, safety and handling
H-phrase | H303, H313, H333 |
Hazard symbol | XN |
Intended use | Research Use Only (RUO) |
R-phrase | R20, R21, R22 |
UNSPSC | 12171501 |
Related products
Overview | ![]() ![]() |
See also: Antibody and Protein Labeling, Immunophenotyping
Correction Factor (260 nm) 0.05 | Correction Factor (280 nm) 0.036 | Correction Factor (482 nm) 0.0005 | Correction Factor (565 nm) 0.0193 | Correction Factor (650 nm) 0.165 | Extinction coefficient (cm -1 M -1) 250000 | Excitation (nm) 756 | Emission (nm) 779 | Quantum yield 0.3 |
ReadiLink™ xtra rapid antibody labeling kits require essentially only 2 simple mixing steps without a column purification needed. Specially formulated Cy7 used in this ReadiLink™ kit is quite stable and shows good reactivity and selectivity with antibodies. The kit has all the essential components for labeling ~2x50 ug antibody. Each of the two vials of specially formulated Cy7 dye provided in the kit is optimized for labeling ~50 µg antibody. ReadiLink™ xtra Cy7 rapid antibody labeling kit provides a convenient and robust method to label monoclonal and polyclonal antibodies with NIR fluorescent Cy7 fluorophore. Cy7 is one of the most used fluorophores for labeling antibodies.

Figure 1. Overview of the ReadiLink™ xtra Rapid Antibody Labeling protocol. In just two simple steps, and with no purification necessary, covalently label microgram amounts of antibodies in under an hour.
Components
Example protocol
AT A GLANCE
Important
Warm all the components and centrifuge the vials briefly before opening, and immediately prepare the required solutions before starting your conjugation. The following protocol is for recommendation.PREPARATION OF WORKING SOLUTION
Protein working solution (Solution A)
For labeling 50 µg of protein (assuming the target protein concentration is 1 mg/mL), mix 5 µL (10% of the total reaction volume) of Reaction Buffer (Component B) with 50 µL of the target protein solution.Note If you have a different protein concentration, adjust the protein volume accordingly to make ~50 µg of protein available for your labeling reaction.
Note For labeling 100 µg of protein (assuming the target protein concentration is 1 mg/mL), mix 10 µL (10% of the total reaction volume) of Reaction Buffer (Component B) with 100 µL of the target protein solution.
Note The protein should be dissolved in 1X phosphate buffered saline (PBS), pH 7.2 - 7.4; if the protein is dissolved in glycine buffer, it must be dialyzed against 1X PBS, pH 7.2 - 7.4, or use Amicon Ultra-0.5, Ultracel-10 Membrane, 10 kDa (cat# UFC501008 from Millipore) to remove free amines or ammonium salts (such as ammonium sulfate and ammonium acetate) that are widely used for protein precipitation.
Note Impure antibodies or antibodies stabilized with bovine serum albumin (BSA) with 0.1 to 0.5 % will be labeled well.
Note For optimal labeling efficiency, a final protein concentration range of 1 - 2 mg/mL is recommended, with a significantly reduced conjugation efficiency at less than 1 mg/mL.
SAMPLE EXPERIMENTAL PROTOCOL
Run conjugation reaction
- Add the protein working solution (Solution A) to ONE vial of labeling dye (Component A), and mix them well by repeatedly pipetting for a few times or vortex the vial for a few seconds.
Note If labeling 100 µg of protein, use both vials (Component A) of labeling dye by dividing the 100 µg of protein into 2 x 50 µg of protein and reacting each 50 µg of protein with one vial of labeling dye. Then combine both vials for the next step. - Keep the conjugation reaction mixture at room temperature for 30 - 60 minutes.
Note The conjugation reaction mixture can be rotated or shaken for longer time if desired.
Stop Conjugation reaction
- Add 5 µL (for 50 µg protein) or 10 µL (for 100 µg protein) which is 10% of the total reaction volume of TQ™-Dyed Quench Buffer (Component C) into the conjugation reaction mixture; mix well.
- Incubate at room temperature for 10 minutes. The labeled protein (antibody) is now ready to use.
Storage of Protein Conjugate
The protein conjugate should be stored at > 0.5 mg/mL in the presence of a carrier protein (e.g., 0.1% bovine serum albumin). For longer storage, the protein conjugates could be lyophilized or divided into single-used aliquots and stored at ≤ –20 °C.Spectrum
Open in Advanced Spectrum Viewer


Spectral properties
Correction Factor (260 nm) | 0.05 |
Correction Factor (280 nm) | 0.036 |
Correction Factor (482 nm) | 0.0005 |
Correction Factor (565 nm) | 0.0193 |
Correction Factor (650 nm) | 0.165 |
Extinction coefficient (cm -1 M -1) | 250000 |
Excitation (nm) | 756 |
Emission (nm) | 779 |
Quantum yield | 0.3 |
Product Family
Images

Figure 1. Immunofluorescence staining of tubulin in HeLa cells. HeLa cells were fixed with 4% PFA, permeabilized with 0.1% Triton X-100 and blocked. Cells were then incubated with mouse anti-tubulin antibody and stained with a goat anti-mouse IgG labeled using the ReadiLink™ xtra Rapid Cy7 Antibody Labeling Kit (Cat No. 1973).

Figure 2. HeLa cells were fixed with 4% PFA, permeabilized and blocked. Cells were then incubated with (red) or without (green) anti-beta 2 rabbit antibody and stained with a goat anti-rabbit IgG labeled using the ReadiLink™ xtra Rapid Cy7 Antibody Labeling Kit (Cat No. 1973). The fluorescence signal was monitored using an ACEA NovoCyte flow cytometer in the APC-Cy7 channel.
References
View all 48 references: Citation Explorer
Near-infrared/pH dual-responsive nanocomplexes for targeted imaging and chemo/gene/photothermal tri-therapies of non-small cell lung cancer.
Authors: Li, Ziying and Zhu, Lisheng and Liu, Weiqun and Zheng, Yilin and Li, Xudong and Ye, Jinxiang and Li, Bifei and Chen, Haijun and Gao, Yu
Journal: Acta biomaterialia (2020): 242-259
Authors: Li, Ziying and Zhu, Lisheng and Liu, Weiqun and Zheng, Yilin and Li, Xudong and Ye, Jinxiang and Li, Bifei and Chen, Haijun and Gao, Yu
Journal: Acta biomaterialia (2020): 242-259
PI3KC3 complex subunit NRBF2 is required for apoptotic cell clearance to restrict intestinal inflammation.
Authors: Wu, Ming-Yue and Liu, Le and Wang, Er-Jin and Xiao, Hai-Tao and Cai, Cui-Zan and Wang, Jing and Su, Huanxing and Wang, Yitao and Tan, Jieqiong and Zhang, Zhuohua and Wang, Juan and Yao, Maojing and Ouyang, De-Fang and Yue, Zhenyu and Li, Min and Chen, Ye and Bian, Zhao-Xiang and Lu, Jia-Hong
Journal: Autophagy (2020): 1-16
Authors: Wu, Ming-Yue and Liu, Le and Wang, Er-Jin and Xiao, Hai-Tao and Cai, Cui-Zan and Wang, Jing and Su, Huanxing and Wang, Yitao and Tan, Jieqiong and Zhang, Zhuohua and Wang, Juan and Yao, Maojing and Ouyang, De-Fang and Yue, Zhenyu and Li, Min and Chen, Ye and Bian, Zhao-Xiang and Lu, Jia-Hong
Journal: Autophagy (2020): 1-16
Quantitative, real-time in vivo tracking of magnetic nanoparticles using multispectral optoacoustic tomography (MSOT) imaging.
Authors: Anani, Tareq and Brannen, Andrew and Panizzi, Peter and Duin, Evert C and David, Allan E
Journal: Journal of pharmaceutical and biomedical analysis (2020): 112951
Authors: Anani, Tareq and Brannen, Andrew and Panizzi, Peter and Duin, Evert C and David, Allan E
Journal: Journal of pharmaceutical and biomedical analysis (2020): 112951
Real-time monitoring and accurate diagnosis of drug-induced hepatotoxicity in vivo by ratio-fluorescence and photoacoustic imaging of peroxynitrite.
Authors: Zhuang, Hongjun and Li, Benhao and Zhao, Mengyao and Wei, Peng and Yuan, Wei and Zhang, Mengfan and Han, Xuemin and Chen, Yin and Yi, Tao
Journal: Nanoscale (2020)
Authors: Zhuang, Hongjun and Li, Benhao and Zhao, Mengyao and Wei, Peng and Yuan, Wei and Zhang, Mengfan and Han, Xuemin and Chen, Yin and Yi, Tao
Journal: Nanoscale (2020)
Supramolecular Nanodiscs Self-Assembled from Non-Ionic Heptamethine Cyanine for Imaging-Guided Cancer Photothermal Therapy.
Authors: Mu, Xueluer and Lu, Yingxi and Wu, Fapu and Wei, Yuhan and Ma, Huihui and Zhao, Yingjie and Sun, Jing and Liu, Shaofeng and Zhou, Xianfeng and Li, Zhibo
Journal: Advanced materials (Deerfield Beach, Fla.) (2020): e1906711
Authors: Mu, Xueluer and Lu, Yingxi and Wu, Fapu and Wei, Yuhan and Ma, Huihui and Zhao, Yingjie and Sun, Jing and Liu, Shaofeng and Zhou, Xianfeng and Li, Zhibo
Journal: Advanced materials (Deerfield Beach, Fla.) (2020): e1906711
A versatile theranostic nanodevice based on an orthogonal bioconjugation strategy for efficient targeted treatment and monitoring of triple negative breast cancer.
Authors: Cano-Cortes, María Victoria and Navarro-Marchal, Saúl Abenhamar and Ruiz-Blas, María Paz and Diaz-Mochon, Juan José and Marchal, Juan Antonio and Sanchez-Martin, Rosario M
Journal: Nanomedicine : nanotechnology, biology, and medicine (2020): 102120
Authors: Cano-Cortes, María Victoria and Navarro-Marchal, Saúl Abenhamar and Ruiz-Blas, María Paz and Diaz-Mochon, Juan José and Marchal, Juan Antonio and Sanchez-Martin, Rosario M
Journal: Nanomedicine : nanotechnology, biology, and medicine (2020): 102120
QuatCy: A Heptamethine Cyanine Modification With Improved Characteristics.
Authors: Thavornpradit, Sopida and Usama, Syed Muhammad and Park, G Kate and Shrestha, Jaya P and Nomura, Shinsuke and Baek, Yoonji and Choi, Hak Soo and Burgess, Kevin
Journal: Theranostics (2019): 2856-2867
Authors: Thavornpradit, Sopida and Usama, Syed Muhammad and Park, G Kate and Shrestha, Jaya P and Nomura, Shinsuke and Baek, Yoonji and Choi, Hak Soo and Burgess, Kevin
Journal: Theranostics (2019): 2856-2867
Evaluation of COC183B2 antibody targeting ovarian cancer by near-infrared fluorescence imaging.
Authors: Zhang, Chen and Ling, Xinyu and Guo, Yanxiu and Yuan, Cunzhong and Cheng, Hongyan and Ye, Xue and Ma, Ruiqiong and Zhang, Yinli and Li, Yi and Chang, Xiaohong and Kong, Beihua and Liu, Tao and Cui, Heng
Journal: Chinese journal of cancer research = Chung-kuo yen cheng yen chiu (2019): 673-685
Authors: Zhang, Chen and Ling, Xinyu and Guo, Yanxiu and Yuan, Cunzhong and Cheng, Hongyan and Ye, Xue and Ma, Ruiqiong and Zhang, Yinli and Li, Yi and Chang, Xiaohong and Kong, Beihua and Liu, Tao and Cui, Heng
Journal: Chinese journal of cancer research = Chung-kuo yen cheng yen chiu (2019): 673-685
A dual-function colorimetric probe based on Carbazole-Cyanine dyad for highly sensitive recognition of cyanide and hypochlorous acid in aqueous media.
Authors: Pan, Hua and Liu, Yijiang and Liu, Shuzhi and Ou, Zhipeng and Chen, Hongbiao and Li, Huaming
Journal: Talanta (2019): 329-335
Authors: Pan, Hua and Liu, Yijiang and Liu, Shuzhi and Ou, Zhipeng and Chen, Hongbiao and Li, Huaming
Journal: Talanta (2019): 329-335
Drug-Initiated Synthesis of Heterotelechelic Polymer Prodrug Nanoparticles for in Vivo Imaging and Cancer Cell Targeting.
Authors: Vinciguerra, Daniele and Degrassi, Anna and Mancini, Laura and Mura, Simona and Mougin, Julie and Couvreur, Patrick and Nicolas, Julien
Journal: Biomacromolecules (2019): 2464-2476
Authors: Vinciguerra, Daniele and Degrassi, Anna and Mancini, Laura and Mura, Simona and Mougin, Julie and Couvreur, Patrick and Nicolas, Julien
Journal: Biomacromolecules (2019): 2464-2476
Application notes
A Meta-Analysis of Common Calcium Indicators
A New Protein Crosslinking Method for Labeling and Modifying Antibodies
A Novel Fluorescent Probe for Imaging and Detecting Hydroxyl Radical in Living Cells
A Novel NO Wash Probeniceid-Free Calcium Assay for Functional Analysis of GPCR and Calcium Channel Targets
Abbreviation of Common Chemical Compounds Related to Peptides
A New Protein Crosslinking Method for Labeling and Modifying Antibodies
A Novel Fluorescent Probe for Imaging and Detecting Hydroxyl Radical in Living Cells
A Novel NO Wash Probeniceid-Free Calcium Assay for Functional Analysis of GPCR and Calcium Channel Targets
Abbreviation of Common Chemical Compounds Related to Peptides
FAQ
Are Cell Navigator® Cell Plasma Membrane Staining Kits suitable for cell culture medium samples?
Are there any alternatives to BrdU (Bromodeoxyuridine)?
Are there any alternatives to Cy5?
Are there any alternatives to indocyanine green (ICG)?
Are there any calcium indicators that don't require probenecid (PBC)?
Are there any alternatives to BrdU (Bromodeoxyuridine)?
Are there any alternatives to Cy5?
Are there any alternatives to indocyanine green (ICG)?
Are there any calcium indicators that don't require probenecid (PBC)?