iFluor® 647 TCO
Ordering information
Price | |
Catalog Number | |
Unit Size | |
Quantity |
Additional ordering information
Telephone | 1-800-990-8053 |
Fax | 1-800-609-2943 |
sales@aatbio.com | |
International | See distributors |
Bulk request | Inquire |
Custom size | Inquire |
Shipping | Standard overnight for United States, inquire for international |
Physical properties
Molecular weight | 1181.33 |
Solvent | DMSO |
Spectral properties
Correction Factor (260 nm) | 0.03 |
Correction Factor (280 nm) | 0.03 |
Correction Factor (656 nm) | 0.0793 |
Extinction coefficient (cm -1 M -1) | 2500001 |
Excitation (nm) | 656 |
Emission (nm) | 670 |
Quantum yield | 0.251 |
Storage, safety and handling
H-phrase | H303, H313, H333 |
Hazard symbol | XN |
Intended use | Research Use Only (RUO) |
R-phrase | R20, R21, R22 |
Storage | Freeze (< -15 °C); Minimize light exposure |
UNSPSC | 12171501 |
Overview | ![]() ![]() |
See also: iFluor® Dyes and Kits
Molecular weight 1181.33 | Correction Factor (260 nm) 0.03 | Correction Factor (280 nm) 0.03 | Correction Factor (656 nm) 0.0793 | Extinction coefficient (cm -1 M -1) 2500001 | Excitation (nm) 656 | Emission (nm) 670 | Quantum yield 0.251 |
The tetrazine-trans-cyclooctene (TCO) ligation constitutes a non-toxic biomolecule labeling method of unparalleled speed. A tetrazine-functionalized molecule reacts with a TCO-functionalized molecule, forming a stable conjugate via a dihydropyrazine moiety. This has gained popularity due to its extremely fast kinetics. AAT Bioquest offers a group of tetrazine- and TCO-containing dyes for exploring various biological systems that can use this powerful click reaction. iFluor® 647-TCO can be readily used to label tetrazine-modified biological molecules for fluorescence imaging and other fluorescence-based biological applications. The conjugates prepared with iFluor® 647 dye have spectral properties almost identical to the popular Cy5 and Alexa Fluor® 647. In most cases, antibody conjugates prepared with iFluor® 647 tend to have a higher signal/background ratio than the spectrally similar dye conjugates, such as Cy5 and Alexa Fluor® 647 (Alexa Fluor® is the trademark of Invitrogen).
Calculators
Common stock solution preparation
Table 1. Volume of DMSO needed to reconstitute specific mass of iFluor® 647 TCO to given concentration. Note that volume is only for preparing stock solution. Refer to sample experimental protocol for appropriate experimental/physiological buffers.
0.1 mg | 0.5 mg | 1 mg | 5 mg | 10 mg | |
1 mM | 84.65 µL | 423.252 µL | 846.504 µL | 4.233 mL | 8.465 mL |
5 mM | 16.93 µL | 84.65 µL | 169.301 µL | 846.504 µL | 1.693 mL |
10 mM | 8.465 µL | 42.325 µL | 84.65 µL | 423.252 µL | 846.504 µL |
Molarity calculator
Enter any two values (mass, volume, concentration) to calculate the third.
Mass (Calculate) | Molecular weight | Volume (Calculate) | Concentration (Calculate) | Moles | ||||
/ | = | x | = |
Spectrum
Open in Advanced Spectrum Viewer


Spectral properties
Correction Factor (260 nm) | 0.03 |
Correction Factor (280 nm) | 0.03 |
Correction Factor (656 nm) | 0.0793 |
Extinction coefficient (cm -1 M -1) | 2500001 |
Excitation (nm) | 656 |
Emission (nm) | 670 |
Quantum yield | 0.251 |
Product Family
Name | Excitation (nm) | Emission (nm) | Extinction coefficient (cm -1 M -1) | Quantum yield | Correction Factor (260 nm) | Correction Factor (280 nm) | Correction Factor (656 nm) |
iFluor® 647 maleimide | 656 | 670 | 2500001 | 0.251 | 0.03 | 0.03 | 0.0793 |
iFluor® 647 amine | 656 | 670 | 2500001 | 0.251 | 0.03 | 0.03 | 0.0793 |
iFluor® 647 hydrazide | 656 | 670 | 2500001 | 0.251 | 0.03 | 0.03 | 0.0793 |
iFluor® 647 alkyne | 656 | 670 | 2500001 | 0.251 | 0.03 | 0.03 | 0.0793 |
iFluor® 647 azide | 656 | 670 | 2500001 | 0.251 | 0.03 | 0.03 | 0.0793 |
iFluor® 647 Styramide *Superior Replacement for Alexa Fluor 647 tyramide* | 656 | 670 | 2500001 | 0.251 | 0.03 | 0.03 | 0.0793 |
iFluor® 647 Tyramide | 656 | 670 | 2500001 | 0.251 | 0.03 | 0.03 | 0.0793 |
iFluor® 488 TCO | 491 | 516 | 750001 | 0.91 | 0.21 | 0.11 | - |
iFluor® 555 TCO | 557 | 570 | 1000001 | 0.641 | 0.23 | 0.14 | - |
Show More (2) |
Images

Figure 1. The tetrazine-trans-cyclooctene (TCO) ligation constitutes a non-toxic biomolecule labeling method of unparalleled speed. A tetrazine-functionalized molecule reacts with a TCO-functionalized molecule, forming a stable conjugate via a dihydropyrazine moiety. This has gained popularity due to its extremely fast kinetics. iFluor® 647-TCO can be readily used to label tetrazine-modified biological molecules for fluorescence imaging and other fluorescence-based biochemical analysis.
Citations
View all 7 citations: Citation Explorer
Immune-regulating bimetallic metal-organic framework nanoparticles designed for cancer immunotherapy
Authors: Dai, Zan and Wang, Qiaoyun and Tang, Jie and Wu, Min and Li, Haoze and Yang, Yannan and Zhen, Xu and Yu, Chengzhong
Journal: Biomaterials (2022): 121261
Authors: Dai, Zan and Wang, Qiaoyun and Tang, Jie and Wu, Min and Li, Haoze and Yang, Yannan and Zhen, Xu and Yu, Chengzhong
Journal: Biomaterials (2022): 121261
Site-specific labeling and functional efficiencies of human fibroblast growth Factor-1 with a range of fluorescent Dyes in the flexible N-Terminal region and a rigid $\beta$-turn region
Authors: Mohale, Mamello and Gundampati, Ravi Kumar and Kumar, Thallapuranam Krishnaswamy Suresh and Heyes, Colin D
Journal: Analytical biochemistry (2022): 114524
Authors: Mohale, Mamello and Gundampati, Ravi Kumar and Kumar, Thallapuranam Krishnaswamy Suresh and Heyes, Colin D
Journal: Analytical biochemistry (2022): 114524
SP/NK-1R Axis Promotes Perineural Invasion of Pancreatic Cancer and is Affected by lncRNA LOC389641
Authors: Ji, Tengfei and Ma, Keqiang and Wu, Hongsheng and Cao, Tiansheng
Journal: (2021)
Authors: Ji, Tengfei and Ma, Keqiang and Wu, Hongsheng and Cao, Tiansheng
Journal: (2021)
Efferocytosis induces macrophage proliferation to help resolve tissue injury
Authors: Gerlach, Brennan D and Ampomah, Patrick B and Yurdagul Jr, Arif and Liu, Chuang and Lauring, Max C and Wang, Xiaobo and Kasikara, Canan and Kong, Na and Shi, Jinjun and Tao, Wei and others,
Journal: Cell metabolism (2021): 2445--2463
Authors: Gerlach, Brennan D and Ampomah, Patrick B and Yurdagul Jr, Arif and Liu, Chuang and Lauring, Max C and Wang, Xiaobo and Kasikara, Canan and Kong, Na and Shi, Jinjun and Tao, Wei and others,
Journal: Cell metabolism (2021): 2445--2463
Enrichment of NPC1-deficient cells with the lipid LBPA stimulates autophagy, improves lysosomal function, and reduces cholesterol storage
Authors: Ilnytska, Olga and Lai, Kimberly and Gorshkov, Kirill and Schultz, Mark L and Tran, Bruce Nguyen and Jeziorek, Maciej and Kunkel, Thaddeus J and Azaria, Ruth D and McLoughlin, Hayley S and Waghalter, Miriam and others,
Journal: Journal of Biological Chemistry (2021)
Authors: Ilnytska, Olga and Lai, Kimberly and Gorshkov, Kirill and Schultz, Mark L and Tran, Bruce Nguyen and Jeziorek, Maciej and Kunkel, Thaddeus J and Azaria, Ruth D and McLoughlin, Hayley S and Waghalter, Miriam and others,
Journal: Journal of Biological Chemistry (2021)
Pharmacological targeting of Sam68 functions in colorectal cancer stem cells
Authors: Masibag, Angelique N and Bergin, Christopher J and Haebe, Joshua R and Zouggar, A{\"\i}cha and Shah, Muhammad S and Sandouka, Tamara and da Silva, Amanda Mendes and Desrochers, Fran{\c{c}}ois M and Fournier-Morin, Aube and Benoit, Yannick D
Journal: Iscience (2021): 103442
Authors: Masibag, Angelique N and Bergin, Christopher J and Haebe, Joshua R and Zouggar, A{\"\i}cha and Shah, Muhammad S and Sandouka, Tamara and da Silva, Amanda Mendes and Desrochers, Fran{\c{c}}ois M and Fournier-Morin, Aube and Benoit, Yannick D
Journal: Iscience (2021): 103442
Influence of particle geometry on gastrointestinal transit and absorption following oral administration
Authors: Li, Dong and Zhuang, Jie and He, Haisheng and Jiang, Sifan and Banerjee, Amrita and Lu, Yi and Wu, Wei and Mitragotri, Samir and Gan, Li and Qi, Jianping
Journal: ACS applied materials \& interfaces (2017): 42492--42502
Authors: Li, Dong and Zhuang, Jie and He, Haisheng and Jiang, Sifan and Banerjee, Amrita and Lu, Yi and Wu, Wei and Mitragotri, Samir and Gan, Li and Qi, Jianping
Journal: ACS applied materials \& interfaces (2017): 42492--42502
References
View all 50 references: Citation Explorer
Bond-Breaking Bio-orthogonal Chemistry Efficiently Uncages Fluorescent and Therapeutic Compounds under Physiological Conditions.
Authors: Wu, Xunshen and Wu, Kui and Gaye, Fatima and Royzen, Maksim
Journal: Organic letters (2020): 6041-6044
Authors: Wu, Xunshen and Wu, Kui and Gaye, Fatima and Royzen, Maksim
Journal: Organic letters (2020): 6041-6044
Recent advances in bio-orthogonal and dynamic crosslinking of biomimetic hydrogels.
Authors: Arkenberg, Matthew R and Nguyen, Han D and Lin, Chien-Chi
Journal: Journal of materials chemistry. B (2020)
Authors: Arkenberg, Matthew R and Nguyen, Han D and Lin, Chien-Chi
Journal: Journal of materials chemistry. B (2020)
Profiling the Protein Targets of Unmodified Bio-Active Molecules with Drug Affinity Responsive Target Stability and Liquid Chromatography/Tandem Mass Spectrometry.
Authors: Hwang, Hui-Yun and Kim, Tae Young and Szász, Marcell A and Dome, Balazs and Malm, Johan and Marko-Varga, Gyorgy and Kwon, Ho Jeong
Journal: Proteomics (2020): e1900325
Authors: Hwang, Hui-Yun and Kim, Tae Young and Szász, Marcell A and Dome, Balazs and Malm, Johan and Marko-Varga, Gyorgy and Kwon, Ho Jeong
Journal: Proteomics (2020): e1900325
Bio-orthogonal click-targeting nanocomposites for chemo-photothermal synergistic therapy in breast cancer.
Authors: Qiao, Jianan and Tian, Fengchun and Deng, Yudi and Shang, Yunkai and Chen, Shijie and Chang, Enhao and Yao, Jing
Journal: Theranostics (2020): 5305-5321
Authors: Qiao, Jianan and Tian, Fengchun and Deng, Yudi and Shang, Yunkai and Chen, Shijie and Chang, Enhao and Yao, Jing
Journal: Theranostics (2020): 5305-5321
Click-to-Capture: A method for enriching viable Staphylococcus aureus using bio-orthogonal labeling of surface proteins.
Authors: Shalizi, Aryaman and Wiegers, Toni N and Maamar, Hédia
Journal: PloS one (2020): e0234542
Authors: Shalizi, Aryaman and Wiegers, Toni N and Maamar, Hédia
Journal: PloS one (2020): e0234542
Engineering the Bio-Nano Interface Using a Multifunctional Coordinating Polymer Coating.
Authors: Wang, Wentao and Mattoussi, Hedi
Journal: Accounts of chemical research (2020): 1124-1138
Authors: Wang, Wentao and Mattoussi, Hedi
Journal: Accounts of chemical research (2020): 1124-1138
A bio-responsive 6-mercaptopurine/doxorubicin based "Click Chemistry" polymeric prodrug for cancer therapy.
Authors: Liao, Jianhong and Peng, Haisheng and Wei, Xuan and Song, Yajing and Liu, Can and Li, Dan and Yin, Yihua and Xiong, Xiong and Zheng, Hua and Wang, Qun
Journal: Materials science & engineering. C, Materials for biological applications (2020): 110461
Authors: Liao, Jianhong and Peng, Haisheng and Wei, Xuan and Song, Yajing and Liu, Can and Li, Dan and Yin, Yihua and Xiong, Xiong and Zheng, Hua and Wang, Qun
Journal: Materials science & engineering. C, Materials for biological applications (2020): 110461
Titanium coating with mussel inspired polymer and bio-orthogonal chemistry enhances antimicrobial activity against Staphylococcus aureus.
Authors: Czuban, Magdalena and Kulka, Michaël W and Wang, Lei and Koliszak, Anna and Achazi, Katharina and Schlaich, Christoph and Donskyi, Ievgen S and Di Luca, Mariagrazia and Mejia Oneto, Jose M and Royzen, Maksim and Haag, Rainer and Trampuz, Andrej
Journal: Materials science & engineering. C, Materials for biological applications (2020): 111109
Authors: Czuban, Magdalena and Kulka, Michaël W and Wang, Lei and Koliszak, Anna and Achazi, Katharina and Schlaich, Christoph and Donskyi, Ievgen S and Di Luca, Mariagrazia and Mejia Oneto, Jose M and Royzen, Maksim and Haag, Rainer and Trampuz, Andrej
Journal: Materials science & engineering. C, Materials for biological applications (2020): 111109
Global analysis of RNA metabolism using bio-orthogonal labeling coupled with next-generation RNA sequencing.
Authors: Wolfe, Michael B and Goldstrohm, Aaron C and Freddolino, Peter L
Journal: Methods (San Diego, Calif.) (2019): 88-103
Authors: Wolfe, Michael B and Goldstrohm, Aaron C and Freddolino, Peter L
Journal: Methods (San Diego, Calif.) (2019): 88-103
Facile Synthesis of a 3,4-Ethylene-Dioxythiophene (EDOT) Derivative for Ease of Bio-Functionalization of the Conducting Polymer PEDOT.
Authors: Wu, Bingchen and Cao, Bin and Taylor, Ian Mitch and Woeppel, Kevin and Cui, Xinyan Tracy
Journal: Frontiers in chemistry (2019): 178
Authors: Wu, Bingchen and Cao, Bin and Taylor, Ian Mitch and Woeppel, Kevin and Cui, Xinyan Tracy
Journal: Frontiers in chemistry (2019): 178
Application notes
A Meta-Analysis of Common Calcium Indicators
A New Protein Crosslinking Method for Labeling and Modifying Antibodies
A Novel Fluorescent Probe for Imaging and Detecting Hydroxyl Radical in Living Cells
A Novel NO Wash Probeniceid-Free Calcium Assay for Functional Analysis of GPCR and Calcium Channel Targets
Abbreviation of Common Chemical Compounds Related to Peptides
A New Protein Crosslinking Method for Labeling and Modifying Antibodies
A Novel Fluorescent Probe for Imaging and Detecting Hydroxyl Radical in Living Cells
A Novel NO Wash Probeniceid-Free Calcium Assay for Functional Analysis of GPCR and Calcium Channel Targets
Abbreviation of Common Chemical Compounds Related to Peptides
FAQ
Are Cell Navigator® Cell Plasma Membrane Staining Kits suitable for cell culture medium samples?
Are there any alternatives to BrdU (Bromodeoxyuridine)?
Are there any alternatives to Cy5?
Are there any alternatives to indocyanine green (ICG)?
Are there any calcium indicators that don't require probenecid (PBC)?
Are there any alternatives to BrdU (Bromodeoxyuridine)?
Are there any alternatives to Cy5?
Are there any alternatives to indocyanine green (ICG)?
Are there any calcium indicators that don't require probenecid (PBC)?