iFluor® 647 Styramide *Superior Replacement for Alexa Fluor 647 tyramide*
Overview | ![]() ![]() |
See also: Antibodies and Proteomics, Antibody and Protein Labeling, Bioconjugation, Horseradish Peroxidase (HRP) and Poly-HRP, iFluor® Dyes and Kits, Immunohistochemistry (IHC), Power Styramide™ Signal Amplification (PSA™)
Molecular weight 1231.63 | Correction Factor (260 nm) 0.03 | Correction Factor (280 nm) 0.03 | Correction Factor (656 nm) 0.0793 | Extinction coefficient (cm -1 M -1) 2500001 | Excitation (nm) 656 | Emission (nm) 670 | Quantum yield 0.251 |
Power Styramide™ Signal Amplification (PSA™) system is one of the most sensitive methods that can detect extremely low-abundance targets in cells and tissues with improved fluorescence signal 10-50 times higher than the widely used tyramide (TSA) reagents. In combination with our superior iFluor® dyes that have higher florescence intensity, increased photostability and enhanced water solubility, the iFluor® dye-labeled Styramide™ conjugates can generate fluorescence signal with significantly higher precision and sensitivity (more than 100 times) than standard ICC/IF/IHC. PSA utilizes the catalytic activity of horseradish peroxidase (HRP) for covalent deposition of fluorophores in situ. PSA radicals have much higher reactivity than tyramide radicals, making the PSA system much faster, more robust and sensitive than the traditional TSA reagents. Compared to tyramide reagents, the Styramide™ conjugates have ability to label the target at higher efficiency and thus generate significantly higher fluorescence signal. Styramide™ conjugates also allow significantly less consumption of primary antibody compared to standard directly conjugate method or tyramide amplification with the same level of sensitivity. iFluor® 647 Styramide is a superior replacement for Alexa Fluor 647 tyramide or other spectrally similar fluorescent tyramide conjugates or TSA reagents.
Platform
Fluorescence microscope
Excitation | Cy5 filter set |
Emission | Cy5 filter set |
Recommended plate | Black wall/clear bottom |
Instrument specification(s) | Cy5 filter set |
Example protocol
AT A GLANCE
Protocol Summary
- Fix/permeabilize/block cells or tissue
- Add primary antibody in blocking buffer
- Add HRP-conjugated secondary antibody
- Prepare Styramide™ working solution and apply in cells or tissue for 5-10 minutes at room temperature
PREPARATION OF STOCK SOLUTIONS
Unless otherwise noted, all unused stock solutions should be divided into single-use aliquots and stored at -20 °C after preparation. Avoid repeated freeze-thaw cycles.
1. Styramide™ stock solution (100X)
Add 100 µL of DMSO into the vial of iFluor™ dye-labeled Styramide™ conjugate to make 100X Styramide™ stock solution. Note: Make single use aliquots, and store unused 100X stock solution at 2-8 oC in dark place and avoid repeat freeze-thaw cycles.2. H2O2 stock solution
Add 10 µL of 3% hydrogen peroxide (Not provided) to 90 µL of ddH2O. Note: Prepare the 100X H2O2 solution fresh on the day of use.PREPARATION OF WORKING SOLUTION
1. Styramide™ working solution (1X)
Every 1 mL of Reaction Buffer requires 10 µL of Styramide™ stock solution and 10 µL of H2O2 stock solution. Note: The Styramide™ provided is enough for 100 tests based on 100 µL of Styramide™ working solution needed per coverslip or per well in a 96-well microplate. Note: The Styramide™ working solution must be used within 2 hours after preparation and avoid direct exposure to light.2. Secondary antibody-HRP working solution
Make appropriate concentration of secondary antibody-HRP working solution as per the manufacturer's recommendations.SAMPLE EXPERIMENTAL PROTOCOL
This protocol is applicable for both cells and tissues staining.
Protocol can be found at https://www.aatbio.com/resources/guides/paraffin-embedded-tissueimmunohistochemistry-protocol.html
Cell fixation and permeabilization
- Fix the cells or tissue with 3.7% formaldehyde or paraformaldehyde, in PBS at room temperature for 20 minutes.
- Rinse the cells or tissue with PBS twice.
- Permeabilize the cells with 0.1% Triton X-100 solution for 1-5 minutes at room temperature.
- Rinse the cells or tissue with PBS twice.
Tissue fixation, deparaffinization and rehydration
Deparaffinize and dehydrate the tissue according to the standard IHC protocols. Perform antigen retrieval with preferred specific solution/protocol as needed.Protocol can be found at https://www.aatbio.com/resources/guides/paraffin-embedded-tissueimmunohistochemistry-protocol.html
Peroxidase labeling
- Optional: Quench endogenous peroxidase activity by incubating cell or tissue sample in peroxidase quenching solution (such as 3% hydrogen peroxide) for 10 minutes. Rinse with PBS twice at room temperature.
- Optional: If using HRP-conjugated streptavidin, it is advisable to block endogenous biotins by biotin blocking buffer.
- Block with preferred blocking solution (such as PBS with 1% BSA) for 30 minutes at 4 °C.
- Remove blocking solution and add primary antibody diluted in recommended antibody diluent for 60 minutes at room temperature or overnight at 4 °C.
- Wash with PBS three times for 5 minutes each.
- Apply 100 µL of secondary antibody-HRP working solution to each sample and incubate for 60 minutes at room temperature. Note: Incubation time and concentration can be varied depending on the signal intensity.
- Wash with PBS three times for 5 minutes each.
Styramide labeling
- Prepare and apply 100 µL of Styramide™ working solution to each sample and incubate for 5-10 minutes at room temperature. Note: If you observe non-specific signal, you can shorten the incubation time with Styramide. You should optimize the incubation period using positive and negative control samples at various incubation time points. Or you can use lower concentration of Styramide in the working solution.
- Rinse with PBS three times.
Counterstain and fluorescence imaging
- Counterstain the cell or tissue samples as needed. AAT provides a series of nucleus counterstain reagents as listed in Table 1. Follow the instruction provided with the reagents.
- Mount the coverslip using a mounting medium with anti-fading properties.
- Use the appropriate filter set to visualize the signal from the Styramide labeling.
Cat# | Product Name | Ex/Em (nm) |
17548 | Nuclear Blue™ DCS1 | 350/461 |
17550 | Nuclear Green™ DCS1 | 503/526 |
17551 | Nuclear Orange™ DCS1 | 528/576 |
17552 | Nuclear Red™ DCS1 | 642/660 |
Calculators
Common stock solution preparation
Table 1. Volume of DMSO needed to reconstitute specific mass of iFluor® 647 Styramide *Superior Replacement for Alexa Fluor 647 tyramide* to given concentration. Note that volume is only for preparing stock solution. Refer to sample experimental protocol for appropriate experimental/physiological buffers.
0.1 mg | 0.5 mg | 1 mg | 5 mg | 10 mg | |
1 mM | 81.193 µL | 405.966 µL | 811.932 µL | 4.06 mL | 8.119 mL |
5 mM | 16.239 µL | 81.193 µL | 162.386 µL | 811.932 µL | 1.624 mL |
10 mM | 8.119 µL | 40.597 µL | 81.193 µL | 405.966 µL | 811.932 µL |
Molarity calculator
Enter any two values (mass, volume, concentration) to calculate the third.
Mass (Calculate) | Molecular weight | Volume (Calculate) | Concentration (Calculate) | Moles | ||||
/ | = | x | = |
Spectrum
Open in Advanced Spectrum Viewer
Spectral properties
Correction Factor (260 nm) | 0.03 |
Correction Factor (280 nm) | 0.03 |
Correction Factor (656 nm) | 0.0793 |
Extinction coefficient (cm -1 M -1) | 2500001 |
Excitation (nm) | 656 |
Emission (nm) | 670 |
Quantum yield | 0.251 |
Product family
Name | Excitation (nm) | Emission (nm) | Extinction coefficient (cm -1 M -1) | Quantum yield | Correction Factor (260 nm) | Correction Factor (280 nm) |
iFluor® 647 maleimide | 656 | 670 | 2500001 | 0.251 | 0.03 | 0.03 |
iFluor® 647 amine | 656 | 670 | 2500001 | 0.251 | 0.03 | 0.03 |
iFluor® 647 hydrazide | 656 | 670 | 2500001 | 0.251 | 0.03 | 0.03 |
iFluor® 647 alkyne | 656 | 670 | 2500001 | 0.251 | 0.03 | 0.03 |
iFluor® 647 azide | 656 | 670 | 2500001 | 0.251 | 0.03 | 0.03 |
iFluor® 350 Styramide *Superior Replacement for Alexa Fluor 350 tyramide* | 345 | 450 | 200001 | 0.951 | 0.83 | 0.23 |
iFluor® 488 Styramide *Superior Replacement for Alexa Fluor 488 tyramide and Opal 520* | 491 | 516 | 750001 | 0.91 | 0.21 | 0.11 |
iFluor® 546 Styramide *Superior Replacement for Alexa Fluor 546 tyramide* | 541 | 557 | 1000001 | 0.671 | 0.25 | 0.15 |
iFluor® 555 Styramide *Superior Replacement for Alexa Fluor 555 tyramide and Opal 570* | 557 | 570 | 1000001 | 0.641 | 0.23 | 0.14 |
Show More (28) |
Images
Figure 1. Formalin-fixed, paraffin-embedded (FFPE) human lung tissue was labeled with anti-EpCAM mouse mAb followed by HRP-labeled goat anti-mouse IgG (Cat No. 16728). The fluorescence signal was developed using iFluor® 647 styramide (Cat No. 45045) and detected with a Cy5 filter set. Nuclei (blue) were counterstained with DAPI (Cat No. 17507).
Figure 2. Power Styramide™ Signal Amplification (PSA™) system is one of the most sensitive methods that can detect extremely low-abundance targets in cells and tissues with improved fluorescence signal 10-50 times higher than the widely used tyramide (TSA) reagents. In combination with our superior iFluor® dyes that have higher florescence intensity, increased photostability and enhanced water solubility, the iFluor® dye-labeled Styramide™ conjugates can generate fluorescence signal with significantly higher precision and sensitivity (more than 100 times) than standard ICC/IF/IHC. PSA utilizes the catalytic activity of horseradish peroxidase (HRP) for covalent deposition of fluorophores in situ. PSA radicals have much higher reactivity than tyramide radicals, making the PSA system much faster, more robust and sensitive than the traditional TSA reagents.
Citations
View all 6 citations: Citation Explorer
Site-specific labeling and functional efficiencies of human fibroblast growth Factor-1 with a range of fluorescent Dyes in the flexible N-Terminal region and a rigid $\beta$-turn region
Authors: Mohale, Mamello and Gundampati, Ravi Kumar and Kumar, Thallapuranam Krishnaswamy Suresh and Heyes, Colin D
Journal: Analytical biochemistry (2022): 114524
Authors: Mohale, Mamello and Gundampati, Ravi Kumar and Kumar, Thallapuranam Krishnaswamy Suresh and Heyes, Colin D
Journal: Analytical biochemistry (2022): 114524
SP/NK-1R Axis Promotes Perineural Invasion of Pancreatic Cancer and is Affected by lncRNA LOC389641
Authors: Ji, Tengfei and Ma, Keqiang and Wu, Hongsheng and Cao, Tiansheng
Journal: (2021)
Authors: Ji, Tengfei and Ma, Keqiang and Wu, Hongsheng and Cao, Tiansheng
Journal: (2021)
Efferocytosis induces macrophage proliferation to help resolve tissue injury
Authors: Gerlach, Brennan D and Ampomah, Patrick B and Yurdagul Jr, Arif and Liu, Chuang and Lauring, Max C and Wang, Xiaobo and Kasikara, Canan and Kong, Na and Shi, Jinjun and Tao, Wei and others,
Journal: Cell metabolism (2021): 2445--2463
Authors: Gerlach, Brennan D and Ampomah, Patrick B and Yurdagul Jr, Arif and Liu, Chuang and Lauring, Max C and Wang, Xiaobo and Kasikara, Canan and Kong, Na and Shi, Jinjun and Tao, Wei and others,
Journal: Cell metabolism (2021): 2445--2463
Enrichment of NPC1-deficient cells with the lipid LBPA stimulates autophagy, improves lysosomal function, and reduces cholesterol storage
Authors: Ilnytska, Olga and Lai, Kimberly and Gorshkov, Kirill and Schultz, Mark L and Tran, Bruce Nguyen and Jeziorek, Maciej and Kunkel, Thaddeus J and Azaria, Ruth D and McLoughlin, Hayley S and Waghalter, Miriam and others,
Journal: Journal of Biological Chemistry (2021)
Authors: Ilnytska, Olga and Lai, Kimberly and Gorshkov, Kirill and Schultz, Mark L and Tran, Bruce Nguyen and Jeziorek, Maciej and Kunkel, Thaddeus J and Azaria, Ruth D and McLoughlin, Hayley S and Waghalter, Miriam and others,
Journal: Journal of Biological Chemistry (2021)
Pharmacological targeting of Sam68 functions in colorectal cancer stem cells
Authors: Masibag, Angelique N and Bergin, Christopher J and Haebe, Joshua R and Zouggar, A{\"\i}cha and Shah, Muhammad S and Sandouka, Tamara and da Silva, Amanda Mendes and Desrochers, Fran{\c{c}}ois M and Fournier-Morin, Aube and Benoit, Yannick D
Journal: Iscience (2021): 103442
Authors: Masibag, Angelique N and Bergin, Christopher J and Haebe, Joshua R and Zouggar, A{\"\i}cha and Shah, Muhammad S and Sandouka, Tamara and da Silva, Amanda Mendes and Desrochers, Fran{\c{c}}ois M and Fournier-Morin, Aube and Benoit, Yannick D
Journal: Iscience (2021): 103442
Influence of particle geometry on gastrointestinal transit and absorption following oral administration
Authors: Li, Dong and Zhuang, Jie and He, Haisheng and Jiang, Sifan and Banerjee, Amrita and Lu, Yi and Wu, Wei and Mitragotri, Samir and Gan, Li and Qi, Jianping
Journal: ACS applied materials \& interfaces (2017): 42492--42502
Authors: Li, Dong and Zhuang, Jie and He, Haisheng and Jiang, Sifan and Banerjee, Amrita and Lu, Yi and Wu, Wei and Mitragotri, Samir and Gan, Li and Qi, Jianping
Journal: ACS applied materials \& interfaces (2017): 42492--42502