iFluor® 597 succinimidyl ester
Ordering information
Price | |
Catalog Number | |
Unit Size | |
Quantity |
Additional ordering information
Telephone | 1-800-990-8053 |
Fax | 1-800-609-2943 |
sales@aatbio.com | |
Quotation | Request |
International | See distributors |
Shipping | Standard overnight for United States, inquire for international |
Physical properties
Molecular weight | 1058.29 |
Solvent | DMSO |
Spectral properties
Absorbance (nm) | 597 |
Correction Factor (260 nm) | 0.335 |
Correction Factor (280 nm) | 0.514 |
Extinction coefficient (cm -1 M -1) | 1000001 |
Excitation (nm) | 598 |
Emission (nm) | 618 |
Quantum yield | 0.71 |
Storage, safety and handling
H-phrase | H303, H313, H333 |
Hazard symbol | XN |
Intended use | Research Use Only (RUO) |
R-phrase | R20, R21, R22 |
Storage | Freeze (< -15 °C); Minimize light exposure |
UNSPSC | 12171501 |
Overview | ![]() ![]() |
See also: Amine Reactive Dyes and Probes for Conjugation, Antibodies and Proteomics, Antibody and Protein Labeling, Bioconjugation, Chemical Reagents, Dyes by Functional Group, iFluor® Dyes and Kits
Molecular weight 1058.29 | Absorbance (nm) 597 | Correction Factor (260 nm) 0.335 | Correction Factor (280 nm) 0.514 | Extinction coefficient (cm -1 M -1) 1000001 | Excitation (nm) 598 | Emission (nm) 618 | Quantum yield 0.71 |
AAT Bioquest's iFluor® dyes are optimized for labeling proteins, particularly antibodies. These dyes are bright, photostable, and have minimal quenching on proteins. They can be well excited by the major laser lines of fluorescence instruments (e.g., 350, 405, 488, 555, 633, 638, 647, 660, and 802 nm). iFluor® 597 is a unique color for fluorescence imaging and flow cytometry applications. iFluor® 597 is an excellent acceptor dye for preparing PE-tandem dyes. These iFluor® 597 tandem colors offer a set of unique color profiles for spectral flow cytometry. Compared to Alexa Fluor® 594 tandems, iFluor® 597 tandems have improved FRET efficiency and photostability.
Example protocol
PREPARATION OF STOCK SOLUTIONS
Unless otherwise noted, all unused stock solutions should be divided into single-use aliquots and stored at -20 °C after preparation. Avoid repeated freeze-thaw cycles.
Note: The pH of the protein solution (Solution A) should be 8.5 ± 0.5. If the pH of the protein solution is lower than 8.0, adjust the pH to the range of 8.0-9.0 using 1 M sodium bicarbonate solution or 1 M pH 9.0 phosphate buffer.
Note: The protein should be dissolved in 1X phosphate buffered saline (PBS), pH 7.2-7.4. If the protein is dissolved in Tris or glycine buffer, it must be dialyzed against 1X PBS, pH 7.2-7.4, to remove free amines or ammonium salts (such as ammonium sulfate and ammonium acetate) that are widely used for protein precipitation.
Note: Impure antibodies or antibodies stabilized with bovine serum albumin (BSA) or gelatin will not be labeled well. The presence of sodium azide or thimerosal might also interfere with the conjugation reaction. Sodium azide or thimerosal can be removed by dialysis or spin column for optimal labeling results.
Note: The conjugation efficiency is significantly reduced if the protein concentration is less than 2 mg/mL. For optimal labeling efficiency the final protein concentration range of 2-10 mg/mL is recommended.
Note: Prepare the dye stock solution (Solution B) before starting the conjugation. Use promptly. Extended storage of the dye stock solution may reduce the dye activity. Solution B can be stored in freezer for two weeks when kept from light and moisture. Avoid freeze-thaw cycles.
1. Protein stock solution (Solution A)
Mix 100 µL of a reaction buffer (e.g., 1 M sodium carbonate solution or 1 M phosphate buffer with pH ~9.0) with 900 µL of the target protein solution (e.g. antibody, protein concentration >2 mg/mL if possible) to give 1 mL protein labeling stock solution.Note: The pH of the protein solution (Solution A) should be 8.5 ± 0.5. If the pH of the protein solution is lower than 8.0, adjust the pH to the range of 8.0-9.0 using 1 M sodium bicarbonate solution or 1 M pH 9.0 phosphate buffer.
Note: The protein should be dissolved in 1X phosphate buffered saline (PBS), pH 7.2-7.4. If the protein is dissolved in Tris or glycine buffer, it must be dialyzed against 1X PBS, pH 7.2-7.4, to remove free amines or ammonium salts (such as ammonium sulfate and ammonium acetate) that are widely used for protein precipitation.
Note: Impure antibodies or antibodies stabilized with bovine serum albumin (BSA) or gelatin will not be labeled well. The presence of sodium azide or thimerosal might also interfere with the conjugation reaction. Sodium azide or thimerosal can be removed by dialysis or spin column for optimal labeling results.
Note: The conjugation efficiency is significantly reduced if the protein concentration is less than 2 mg/mL. For optimal labeling efficiency the final protein concentration range of 2-10 mg/mL is recommended.
2. iFluor™ 597 SE stock solution (Solution B)
Add anhydrous DMSO into the vial of iFluor™ 597 SE to make a 10 mM stock solution. Mix well by pipetting or vortex.Note: Prepare the dye stock solution (Solution B) before starting the conjugation. Use promptly. Extended storage of the dye stock solution may reduce the dye activity. Solution B can be stored in freezer for two weeks when kept from light and moisture. Avoid freeze-thaw cycles.
SAMPLE EXPERIMENTAL PROTOCOL
This labeling protocol was developed for the conjugate of Goat anti-mouse IgG with iFluor™ 597 SE. You might need further optimization for your particular proteins. Each protein requires distinct dye/protein ratio, which also depends on the properties of dyes. Over labeling of a protein could detrimentally affects its binding affinity while the protein conjugates of low dye/protein ratio gives reduced sensitivity.
Run conjugation reaction
- Use 10:1 molar ratio of Solution B (dye)/Solution A (protein) as the starting point: Add 5 µL of the dye stock solution (Solution B, assuming the dye stock solution is 10 mM) into the vial of the protein solution (95 µL of Solution A) with effective shaking. The concentration of the protein is ~0.05 mM assuming the protein concentration is 10 mg/mL and the molecular weight of the protein is ~200KD. Note: We recommend to use 10:1 molar ratio of Solution B (dye)/Solution A (protein). If it is too less or too high, determine the optimal dye/protein ratio at 5:1, 15:1 and 20:1 respectively.
- Continue to rotate or shake the reaction mixture at room temperature for 30-60 minutes.
Purify the conjugation
The following protocol is an example of dye-protein conjugate purification by using a Sephadex G-25 column.- Prepare Sephadex G-25 column according to the manufacture instruction.
- Load the reaction mixture (From "Run conjugation reaction") to the top of the Sephadex G-25 column.
- Add PBS (pH 7.2-7.4) as soon as the sample runs just below the top resin surface.
- Add more PBS (pH 7.2-7.4) to the desired sample to complete the column purification. Combine the fractions that contain the desired dye-protein conjugate. Note: For immediate use, the dye-protein conjugate need be diluted with staining buffer, and aliquoted for multiple uses. Note: For longer term storage, dye-protein conjugate solution need be concentrated or freeze dried.
Calculators
Common stock solution preparation
Table 1. Volume of DMSO needed to reconstitute specific mass of iFluor® 597 succinimidyl ester to given concentration. Note that volume is only for preparing stock solution. Refer to sample experimental protocol for appropriate experimental/physiological buffers.
0.1 mg | 0.5 mg | 1 mg | 5 mg | 10 mg | |
1 mM | 94.492 µL | 472.46 µL | 944.921 µL | 4.725 mL | 9.449 mL |
5 mM | 18.898 µL | 94.492 µL | 188.984 µL | 944.921 µL | 1.89 mL |
10 mM | 9.449 µL | 47.246 µL | 94.492 µL | 472.46 µL | 944.921 µL |
Molarity calculator
Enter any two values (mass, volume, concentration) to calculate the third.
Mass (Calculate) | Molecular weight | Volume (Calculate) | Concentration (Calculate) | Moles | ||||
/ | = | x | = |
Spectrum
Open in Advanced Spectrum Viewer


Spectral properties
Absorbance (nm) | 597 |
Correction Factor (260 nm) | 0.335 |
Correction Factor (280 nm) | 0.514 |
Extinction coefficient (cm -1 M -1) | 1000001 |
Excitation (nm) | 598 |
Emission (nm) | 618 |
Quantum yield | 0.71 |
Product Family
Name | Excitation (nm) | Emission (nm) | Extinction coefficient (cm -1 M -1) | Quantum yield | Correction Factor (260 nm) | Correction Factor (280 nm) |
iFluor® 350 succinimidyl ester | 345 | 450 | 200001 | 0.951 | 0.83 | 0.23 |
iFluor® 405 succinimidyl ester | 403 | 427 | 370001 | 0.911 | 0.48 | 0.77 |
iFluor® 488 succinimidyl ester | 491 | 516 | 750001 | 0.91 | 0.21 | 0.11 |
iFluor® 514 succinimidyl ester | 511 | 527 | 750001 | 0.831 | 0.265 | 0.116 |
iFluor® 532 succinimidyl ester | 537 | 560 | 900001 | 0.681 | 0.26 | 0.16 |
iFluor® 555 succinimidyl ester | 557 | 570 | 1000001 | 0.641 | 0.23 | 0.14 |
iFluor® 594 succinimidyl ester | 588 | 604 | 1800001 | 0.531 | 0.05 | 0.04 |
iFluor® 633 succinimidyl ester | 640 | 654 | 2500001 | 0.291 | 0.062 | 0.044 |
iFluor® 647 succinimidyl ester | 656 | 670 | 2500001 | 0.251 | 0.03 | 0.03 |
Show More (28) |
Images

Figure 1. Top) Spectral pattern was generated using a 4-laser spectral cytometer. Spatially offset lasers (355 nm, 405 nm, 488 nm, and 640 nm) were used to create four distinct emission profiles, then, when combined, yielded the overall spectral signature. Bottom) Flow cytometry analysis of PBMC stained with PE/iFlour® 597 anti-human CD4 *SK3* conjugate. The fluorescence signal was monitored using an Aurora flow cytometer in the PE/iFluor® 597 specific B6-A channel.

Figure 2. Comparison of CD4+ signal using fluorophore-labeled antibody conjugates. Human peripheral blood mononuclear cells (PBMCs) were isolated and stained using AAT Bioquest PE/iFluor® 597 anti-human CD4 conjugates (top) or Biolegend PE/Dazzle™ 594 anti-human CD conjugates (bottom). The fluorescence signal was monitored using an Aurora flow cytometer in the PE/iFluor® 597 specific B6-A channel.

Figure 3. Stain index comparison of CD4+ signal using fluorophore-labeled antibody conjugates. Human peripheral blood mononuclear cells (PBMCs) were isolated and stained using AAT Bioquest PE/iFluor® 597 anti-human CD4 conjugates or Biolegend PE/Dazzle™ 594 anti-human CD conjugates. The fluorescence signal was monitored using an Aurora flow cytometer in the PE/iFluor® 597 specific B6-A channel.
References
View all 50 references: Citation Explorer
MicroRNA-126 inhibits pathological retinal neovascularization via suppressing vascular endothelial growth factor expression in a rat model of retinopathy of prematurity.
Authors: Fan, Yuan-Yao and Liu, Chi-Hsien and Wu, An-Lun and Chen, Hung-Chi and Hsueh, Yi-Jen and Chen, Kuan-Jen and Lai, Chi-Chun and Huang, Chung-Ying and Wu, Wei-Chi
Journal: European journal of pharmacology (2021): 174035
Authors: Fan, Yuan-Yao and Liu, Chi-Hsien and Wu, An-Lun and Chen, Hung-Chi and Hsueh, Yi-Jen and Chen, Kuan-Jen and Lai, Chi-Chun and Huang, Chung-Ying and Wu, Wei-Chi
Journal: European journal of pharmacology (2021): 174035
Retinal ganglion cells projecting to superior colliculus and pulvinar in marmoset.
Authors: Grünert, Ulrike and Lee, Sammy C S and Kwan, William C and Mundinano, Inaki-Carril and Bourne, James A and Martin, Paul R
Journal: Brain structure & function (2021)
Authors: Grünert, Ulrike and Lee, Sammy C S and Kwan, William C and Mundinano, Inaki-Carril and Bourne, James A and Martin, Paul R
Journal: Brain structure & function (2021)
A fully integrated isotachophoresis with a programmable microfluidic platform.
Authors: Shebindu, Adam and Somaweera, Himali and Estlack, Zachary and Kim, Jungtae and Kim, Jungkyu
Journal: Talanta (2021): 122039
Authors: Shebindu, Adam and Somaweera, Himali and Estlack, Zachary and Kim, Jungtae and Kim, Jungkyu
Journal: Talanta (2021): 122039
Comparison of Sensory and Motor Innervation Between the Acupoints LR3 and LR8 in the Rat With Regional Anatomy and Neural Tract Tracing.
Authors: Xu, Dongsheng and Zou, Ling and Zhang, Wenjie and Liao, Jieying and Wang, Jia and Cui, Jingjing and Su, Yuxin and Wang, Yuqing and Guo, Yating and Shen, Yi and Bai, Wanzhu
Journal: Frontiers in integrative neuroscience (2021): 728747
Authors: Xu, Dongsheng and Zou, Ling and Zhang, Wenjie and Liao, Jieying and Wang, Jia and Cui, Jingjing and Su, Yuxin and Wang, Yuqing and Guo, Yating and Shen, Yi and Bai, Wanzhu
Journal: Frontiers in integrative neuroscience (2021): 728747
KFP-1, a Novel Calcium-Binding Peptide Isolated from Kefir, Promotes Calcium Influx Through TRPV6 Channels.
Authors: Chang, Gary Ro-Lin and Tu, Min-Yu and Chen, Yu-Hsuan and Chang, Ku-Yi and Chen, Chien-Fu and Lai, Jen-Chieh and Tung, Yu-Tang and Chen, Hsiao-Ling and Fan, Hueng-Chuen and Chen, Chuan-Mu
Journal: Molecular nutrition & food research (2021): e2100182
Authors: Chang, Gary Ro-Lin and Tu, Min-Yu and Chen, Yu-Hsuan and Chang, Ku-Yi and Chen, Chien-Fu and Lai, Jen-Chieh and Tung, Yu-Tang and Chen, Hsiao-Ling and Fan, Hueng-Chuen and Chen, Chuan-Mu
Journal: Molecular nutrition & food research (2021): e2100182
Liquid Droplet Formation and Facile Cytosolic Translocation of IgG in the Presence of Attenuated Cationic Amphiphilic Lytic Peptides.
Authors: Iwata, Takahiro and Hirose, Hisaaki and Sakamoto, Kentarou and Hirai, Yusuke and Arafiles, Jan Vincent V and Akishiba, Misao and Imanishi, Miki and Futaki, Shiroh
Journal: Angewandte Chemie (International ed. in English) (2021)
Authors: Iwata, Takahiro and Hirose, Hisaaki and Sakamoto, Kentarou and Hirai, Yusuke and Arafiles, Jan Vincent V and Akishiba, Misao and Imanishi, Miki and Futaki, Shiroh
Journal: Angewandte Chemie (International ed. in English) (2021)
Effect of VIRP1 Protein on Nuclear Import of Citrus Exocortis Viroid (CEVd).
Authors: Seo, Hyesu and Kim, Kyunghee and Park, Woong June
Journal: Biomolecules (2021)
Authors: Seo, Hyesu and Kim, Kyunghee and Park, Woong June
Journal: Biomolecules (2021)
Fluorescently-labeled fremanezumab is distributed to sensory and autonomic ganglia and the dura but not to the brain of rats with uncompromised blood brain barrier.
Authors: Noseda, Rodrigo and Schain, Aaron J and Melo-Carrillo, Agustin and Tien, Jason and Stratton, Jennifer and Mai, Fanny and Strassman, Andrew M and Burstein, Rami
Journal: Cephalalgia : an international journal of headache (2020): 229-240
Authors: Noseda, Rodrigo and Schain, Aaron J and Melo-Carrillo, Agustin and Tien, Jason and Stratton, Jennifer and Mai, Fanny and Strassman, Andrew M and Burstein, Rami
Journal: Cephalalgia : an international journal of headache (2020): 229-240
Modeling iontophoretic drug delivery in a microfluidic device.
Authors: Moarefian, Maryam and Davalos, Rafael V and Tafti, Danesh K and Achenie, Luke E and Jones, Caroline N
Journal: Lab on a chip (2020): 3310-3321
Authors: Moarefian, Maryam and Davalos, Rafael V and Tafti, Danesh K and Achenie, Luke E and Jones, Caroline N
Journal: Lab on a chip (2020): 3310-3321
Cell-based immunofluorescence assay for screening the neurogenesis potential of new drugs in adult hippocampal neural progenitor cells.
Authors: Zhang, Kun and Li, Bin and Li, Peifang and Yang, Xiaoli and Cui, Huixian and Liu, Xiaoyun
Journal: Acta neurobiologiae experimentalis (2019): 302-308
Authors: Zhang, Kun and Li, Bin and Li, Peifang and Yang, Xiaoli and Cui, Huixian and Liu, Xiaoyun
Journal: Acta neurobiologiae experimentalis (2019): 302-308
Application notes
A New Protein Crosslinking Method for Labeling and Modifying Antibodies
Abbreviation of Common Chemical Compounds Related to Peptides
Bright Tide Fluor™-Based Fluorescent Peptides and Their Applications In Drug Discovery and Disease Diagnosis
FITC (Fluorescein isothiocyanate)
Fluorescein isothiocyanate (FITC)
Abbreviation of Common Chemical Compounds Related to Peptides
Bright Tide Fluor™-Based Fluorescent Peptides and Their Applications In Drug Discovery and Disease Diagnosis
FITC (Fluorescein isothiocyanate)
Fluorescein isothiocyanate (FITC)