Actively helping customers, employees and the global community during the coronavirus SARS-CoV-2 outbreak.  Learn more >>

iFluor® 780 succinimidyl ester

Ordering information
Price ()
Catalog Number1371
Unit Size
Find Distributor
Additional ordering information
InternationalSee distributors
ShippingStandard overnight for United States, inquire for international
Physical properties
Molecular weight1526.90
Spectral properties
Correction Factor (260 nm)0.13
Correction Factor (280 nm)0.12
Extinction coefficient (cm -1 M -1)2500001
Excitation (nm)784
Emission (nm)808
Quantum yield0.161
Storage, safety and handling
H-phraseH303, H313, H333
Hazard symbolXN
Intended useResearch Use Only (RUO)
R-phraseR20, R21, R22
StorageFreeze (< -15 °C); Minimize light exposure
Alternative formats
iFluor® 780 maleimide


Molecular weight
Correction Factor (260 nm)
Correction Factor (280 nm)
Extinction coefficient (cm -1 M -1)
Excitation (nm)
Emission (nm)
Quantum yield
AAT Bioquest's iFluor® dyes are optimized for labeling proteins, in particular, antibodies. These dyes are bright, photostable and have minimal quenching on proteins. They can be well excited by the major laser lines of fluorescence instruments (e.g., 350, 355, 405, 488, 555, 633, 638, 647, 660 and 802 nm). iFluor® 780 is an excellent acceptor dye for preparing tandem colors with APC and PE. These iFluor® 780 tandem colors offer a set of unique color profiles for spectral flow cytometry. iFluor® 780 is one of the brightest NIR dyes, and some of its antibody conjugates are significantly brighter than the ones prepared from the IRDyes of the similar wavelengths, such as IRDye800 CW. iFluor® 780 succinimidyl ester is amino-reactive form that can be used to conjugate with amino-containing molecules such as antibodies and peptides.

Example protocol


Unless otherwise noted, all unused stock solutions should be divided into single-use aliquots and stored at -20 °C after preparation. Avoid repeated freeze-thaw cycles.

1. Protein stock solution (Solution A)
Mix 100 µL of a reaction buffer (e.g., 1 M  sodium carbonate solution or 1 M phosphate buffer with pH ~9.0) with 900 µL of the target protein solution (e.g. antibody, protein concentration >2 mg/mL if possible) to give 1 mL protein labeling stock solution.
Note: The pH of the protein solution (Solution A) should be 8.5 ± 0.5. If the pH of the protein solution is lower than 8.0, adjust the pH to the range of 8.0-9.0 using 1 M  sodium bicarbonate solution or 1 M pH 9.0 phosphate buffer.
Note: The protein should be dissolved in 1X phosphate buffered saline (PBS), pH 7.2-7.4. If the protein is dissolved in Tris or glycine buffer, it must be dialyzed against 1X PBS, pH 7.2-7.4, to remove free amines or ammonium salts (such as ammonium sulfate and ammonium acetate) that are widely used for protein precipitation.
Note: Impure antibodies or antibodies stabilized with bovine serum albumin (BSA) or gelatin will not be labeled well. The presence of sodium azide or thimerosal might also interfere with the conjugation reaction. Sodium azide or thimerosal can be removed by dialysis or spin column for optimal labeling results.
Note: The conjugation efficiency is significantly reduced if the protein concentration is less than 2 mg/mL. For optimal labeling efficiency the final protein concentration range of 2-10 mg/mL is recommended.

2. iFluor™ 780 SE stock solution (Solution B)
Add anhydrous DMSO into the vial of iFluor™ 780 SE to make a 10 mM stock solution. Mix well by pipetting or vortex.
Note: Prepare the dye stock solution (Solution B) before starting the conjugation. Use promptly. Extended storage of the dye stock solution may reduce the dye activity. Solution B can be stored in freezer for two weeks when kept from light and moisture. Avoid freeze-thaw cycles.


This labeling protocol was developed for the conjugate of Goat anti-mouse IgG with iFluor™ 780 SE. You might need further optimization for your particular proteins. Each protein requires distinct dye/protein ratio, which also depends on the properties of dyes. Over labeling of a protein could detrimentally affects its binding affinity while the protein conjugates of low dye/protein ratio gives reduced sensitivity.

Run conjugation reaction
  1. Use 10:1 molar ratio of Solution B (dye)/Solution A (protein) as the starting point:  Add 5 µL of the dye stock solution (Solution B, assuming the dye stock solution is 10 mM) into the vial of the protein solution (95 µL of Solution A) with effective shaking. The concentration of the protein is ~0.05 mM assuming the protein concentration is 10 mg/mL and the molecular weight of the protein is ~200KD. Note: We recommend to use 10:1 molar ratio of Solution B (dye)/Solution A (protein). If it is too less or too high, determine the optimal dye/protein ratio at 5:1, 15:1 and 20:1 respectively.
  2. Continue to rotate or shake the reaction mixture at room temperature for 30-60 minutes. 

Purify the conjugation
The following protocol is an example of dye-protein conjugate purification by using a Sephadex G-25 column.
  1. Prepare Sephadex G-25 column according to the manufacture instruction.
  2. Load the reaction mixture (From "Run conjugation reaction") to the top of the Sephadex G-25 column.
  3. Add PBS (pH 7.2-7.4) as soon as the sample runs just below the top resin surface.
  4. Add more PBS (pH 7.2-7.4) to the desired sample to complete the column purification. Combine the fractions that contain the desired dye-protein conjugate. Note: For immediate use, the dye-protein conjugate need be diluted with staining buffer, and aliquoted for multiple uses. Note: For longer term storage, dye-protein conjugate solution need be concentrated or freeze dried. 


Common stock solution preparation

Table 1. Volume of DMSO needed to reconstitute specific mass of iFluor® 780 succinimidyl ester to given concentration. Note that volume is only for preparing stock solution. Refer to sample experimental protocol for appropriate experimental/physiological buffers.

0.1 mg0.5 mg1 mg5 mg10 mg
1 mM65.492 µL327.461 µL654.922 µL3.275 mL6.549 mL
5 mM13.098 µL65.492 µL130.984 µL654.922 µL1.31 mL
10 mM6.549 µL32.746 µL65.492 µL327.461 µL654.922 µL

Molarity calculator

Enter any two values (mass, volume, concentration) to calculate the third.

Mass (Calculate)Molecular weightVolume (Calculate)Concentration (Calculate)Moles


Open in Advanced Spectrum Viewer

Spectral properties

Correction Factor (260 nm)0.13
Correction Factor (280 nm)0.12
Extinction coefficient (cm -1 M -1)2500001
Excitation (nm)784
Emission (nm)808
Quantum yield0.161

Product family

NameExcitation (nm)Emission (nm)Extinction coefficient (cm -1 M -1)Quantum yieldCorrection Factor (260 nm)Correction Factor (280 nm)
iFluor® 350 succinimidyl ester3454502000010.9510.830.23
iFluor® 405 succinimidyl ester4034273700010.9110.480.77
iFluor® 430 succinimidyl ester4334984000010.7810.680.3
iFluor® 440 succinimidyl ester4344804000010.6710.3520.229
iFluor® 450 succinimidyl ester4515024000010.8210.450.27
iFluor® 460 succinimidyl ester468493800001~0.810.980.46
iFluor® 488 succinimidyl ester4915167500010.910.210.11
iFluor® 514 succinimidyl ester5115277500010.8310.2650.116
iFluor® 532 succinimidyl ester5375609000010.6810.260.16
iFluor® 546 succinimidyl ester54155710000010.6710.250.15
iFluor® 555 succinimidyl ester55757010000010.6410.230.14
iFluor® 560 succinimidyl ester56057112000010.5710.04820.069
iFluor® 568 succinimidyl ester56858710000010.5710.340.15
iFluor® 570 succinimidyl ester56057112000010.5810.0480.069
iFluor® 594 succinimidyl ester58860418000010.5310.050.04
iFluor® 597 succinimidyl ester59861810000010.710.3350.514
iFluor® 610 succinimidyl ester61062811000010.8510.320.49
iFluor® 633 succinimidyl ester64065425000010.2910.0620.044
iFluor® 647 succinimidyl ester65667025000010.2510.030.03
iFluor® 660 succinimidyl ester66367825000010.2610.070.08
iFluor® 665 succinimidyl ester667692110,00010.2210.120.09
iFluor® 670 succinimidyl ester67168220000010.5510.030.033
iFluor® 680 succinimidyl ester68470122000010.2310.0970.094
iFluor® 690 succinimidyl ester68570422000010.3010.090.06
iFluor® 700 succinimidyl ester69071322000010.2310.090.04
iFluor® 710 succinimidyl ester71773919000010.6010.120.07
iFluor® 720 succinimidyl ester71674024000010.1410.150.13
iFluor® 740 succinimidyl ester74276422500010.2010.160.16
iFluor® 750 succinimidyl ester75777927500010.1210.0440.039
iFluor® 770 succinimidyl ester77779725000010.160.090.08
iFluor® 790 succinimidyl ester78781225000010.1310.10.09
iFluor® 800 succinimidyl ester80182025000010.1110.030.08
iFluor® 810 succinimidyl ester81182225000010.0510.090.15
iFluor® 820 succinimidyl ester8228502500001-0.110.16
iFluor® 830 succinimidyl ester830867----
iFluor® 840 succinimidyl ester8368792000001-0.20.09
iFluor® 860 succinimidyl ester8538782500001-0.10.14
Show More (38)


View all 50 references: Citation Explorer
A receptor-binding radiopharmaceutical for imaging of traumatic brain injury in a rodent model: [99mTc]Tc-tilmanocept.
Authors: Chen, Wen and Barback, Christopher V and Wang, Shanshan and Hoh, Carl K and Chang, Eric Y and Hall, David J and Head, Brian P and Vera, David R
Journal: Nuclear medicine and biology (2021): 107-114
Resection and survival data from a clinical trial of glioblastoma multiforme-specific IRDye800-BBN fluorescence-guided surgery.
Authors: He, Kunshan and Chi, Chongwei and Li, Deling and Zhang, Jingjing and Niu, Gang and Lv, Fangqiao and Wang, Junmei and Che, Wenqiang and Zhang, Liwei and Ji, Nan and Zhu, Zhaohui and Tian, Jie and Chen, Xiaoyuan
Journal: Bioengineering & translational medicine (2021): e10182
Evaluation of Near-infrared Fluorescence-conjugated Peptides for Visualization of Human Epidermal Receptor 2-overexpressed Gastric Cancer.
Authors: Jeong, Kyoungyun and Kong, Seong-Ho and Bae, Seong-Woo and Park, Cho Rong and Berlth, Felix and Shin, Jae Hwan and Lee, Yun-Sang and Youn, Hyewon and Koo, Eunhee and Suh, Yun-Suhk and Park, Do Joong and Lee, Hyuk-Joon and Yang, Han-Kwang
Journal: Journal of gastric cancer (2021): 191-202
Correction to: Evaluation of Ac-Lys0(IRDye800CW)Tyr3-octreotate as a novel tracer for SSTR2-targeted molecular fluorescence guided surgery in meningioma.
Authors: Dijkstra, Bianca M and de Jong, Marion and Stroet, Marcus C M and Andreae, Fritz and Dulfer, Sebastiaan E and Everts, Marieke and Kruijff, Schelto and Nonnekens, Julie and den Dunnen, Wilfred F A and Kruyt, Frank A E and Groen, Rob J M
Journal: Journal of neuro-oncology (2021): 223
Fluorescence Imaging of Tumor-Accumulating Antibody-IR700 Conjugates Prior to Near-Infrared Photoimmunotherapy (NIR-PIT) Using a Commercially Available Camera Designed for Indocyanine Green.
Authors: Inagaki, Fuyuki F and Fujimura, Daiki and Furusawa, Aki and Okada, Ryuhei and Wakiyama, Hiroaki and Kato, Takuya and Choyke, Peter L and Kobayashi, Hisataka
Journal: Molecular pharmaceutics (2021): 1238-1246
Rapid tumor-labeling kinetics with a site-specific near-infrared anti-CEA nanobody in a patient-derived orthotopic xenograft mouse model of colon cancer.
Authors: Lwin, Thinzar M and Turner, Michael A and Amirfakhri, Siamak and Nishino, Hiroto and Debie, Pieterjan and Cosman, Bard C and Hoffman, Robert M and Hernot, Sophie and Bouvet, Michael
Journal: Journal of surgical oncology (2021): 1121-1127
Necrosis binding of Ac-Lys0(IRDye800CW)-Tyr3-octreotate: a consequence from cyanine-labeling of small molecules.
Authors: Stroet, Marcus C M and Dijkstra, Bianca M and Dulfer, Sebastiaan E and Kruijff, Schelto and den Dunnen, Wilfred F A and Kruyt, Frank A E and Groen, Rob J M and Seimbille, Yann and Panth, Kranthi M and Mezzanotte, Laura and Lowik, Clemens W G M and de Jong, Marion
Journal: EJNMMI research (2021): 47
Preclinical Development of Near-Infrared-Labeled CD38-Targeted Daratumumab for Optical Imaging of CD38 in Multiple Myeloma.
Authors: Cho, Nicholas and Ko, Sooah and Shokeen, Monica
Journal: Molecular imaging and biology (2021): 186-195
Image-guided in situ detection of bacterial biofilms in a human prosthetic knee infection model: a feasibility study for clinical diagnosis of prosthetic joint infections.
Authors: Schoenmakers, Jorrit W A and Heuker, Marjolein and López-Álvarez, Marina and Nagengast, Wouter B and van Dam, Gooitzen M and van Dijl, Jan Maarten and Jutte, Paul C and van Oosten, Marleen
Journal: European journal of nuclear medicine and molecular imaging (2021): 757-767
Rational Linker Design to Accelerate Excretion and Reduce Background Uptake of Peptidomimetic PSMA-Targeting Hybrid Molecules.
Authors: Eder, Ann-Christin and Schäfer, Martin and Schmidt, Jana and Bauder-Wüst, Ulrike and Roscher, Mareike and Leotta, Karin and Haberkorn, Uwe and Kopka, Klaus and Eder, Matthias
Journal: Journal of nuclear medicine : official publication, Society of Nuclear Medicine (2021): 1461-1467