Actively helping customers, employees and the global community during the coronavirus SARS-CoV-2 outbreak.  Learn more >>

iFluor® 740 succinimidyl ester

Ordering information
Price ()
Catalog Number1047
Unit Size
Find Distributor
Additional ordering information
InternationalSee distributors
ShippingStandard overnight for United States, inquire for international
Physical properties
Molecular weight1551.19
Spectral properties
Correction Factor (260 nm)0.16
Correction Factor (280 nm)0.16
Extinction coefficient (cm -1 M -1)2250001
Excitation (nm)742
Emission (nm)764
Quantum yield0.201
Storage, safety and handling
H-phraseH303, H313, H333
Hazard symbolXN
Intended useResearch Use Only (RUO)
R-phraseR20, R21, R22
StorageFreeze (< -15 °C); Minimize light exposure


Molecular weight
Correction Factor (260 nm)
Correction Factor (280 nm)
Extinction coefficient (cm -1 M -1)
Excitation (nm)
Emission (nm)
Quantum yield
AAT Bioquest's iFluor® dyes are optimized for labeling proteins, in particular, antibodies. These dyes are bright, photostable and have minimal quenching on proteins. They can be well excited by the major laser lines of fluorescence instruments (e.g., 350, 355, 405, 488, 555, 633, 638, 647, 660 and 802 nm). iFluor® 740 dyes have fluorescence excitation and emission maxima of ~740 nm and ~760 nm respectively. These spectral characteristics make them a unique color for fluorescence imaging and flow cytometry applications. iFluor® 740 is an excellent acceptor dye for preparing tandem colors with APC and PE. These iFluor® 740 tandem colors offer a set of unique color profiles for spectral flow cytometry. Compared to Alexa Fluor 700 tandems, iFluor® 740 tandems have improved photostability.

Example protocol


Unless otherwise noted, all unused stock solutions should be divided into single-use aliquots and stored at -20 °C after preparation. Avoid repeated freeze-thaw cycles.

1. Protein stock solution (Solution A)
Mix 100 µL of a reaction buffer (e.g., 1 M  sodium carbonate solution or 1 M phosphate buffer with pH ~9.0) with 900 µL of the target protein solution (e.g. antibody, protein concentration >2 mg/mL if possible) to give 1 mL protein labeling stock solution.
Note: The pH of the protein solution (Solution A) should be 8.5 ± 0.5. If the pH of the protein solution is lower than 8.0, adjust the pH to the range of 8.0-9.0 using 1 M  sodium bicarbonate solution or 1 M pH 9.0 phosphate buffer.
Note: The protein should be dissolved in 1X phosphate buffered saline (PBS), pH 7.2-7.4. If the protein is dissolved in Tris or glycine buffer, it must be dialyzed against 1X PBS, pH 7.2-7.4, to remove free amines or ammonium salts (such as ammonium sulfate and ammonium acetate) that are widely used for protein precipitation.
Note: Impure antibodies or antibodies stabilized with bovine serum albumin (BSA) or gelatin will not be labeled well. The presence of sodium azide or thimerosal might also interfere with the conjugation reaction. Sodium azide or thimerosal can be removed by dialysis or spin column for optimal labeling results.
Note: The conjugation efficiency is significantly reduced if the protein concentration is less than 2 mg/mL. For optimal labeling efficiency the final protein concentration range of 2-10 mg/mL is recommended.

2. iFluor™ 740 SE stock solution (Solution B)
Add anhydrous DMSO into the vial of iFluor™ 740 SE to make a 10 mM stock solution. Mix well by pipetting or vortex.
Note: Prepare the dye stock solution (Solution B) before starting the conjugation. Use promptly. Extended storage of the dye stock solution may reduce the dye activity. Solution B can be stored in freezer for two weeks when kept from light and moisture. Avoid freeze-thaw cycles.


This labeling protocol was developed for the conjugate of Goat anti-mouse IgG with iFluor™ 740 SE. You might need further optimization for your particular proteins. Each protein requires distinct dye/protein ratio, which also depends on the properties of dyes. Over labeling of a protein could detrimentally affects its binding affinity while the protein conjugates of low dye/protein ratio gives reduced sensitivity.

Run conjugation reaction
  1. Use 10:1 molar ratio of Solution B (dye)/Solution A (protein) as the starting point:  Add 5 µL of the dye stock solution (Solution B, assuming the dye stock solution is 10 mM) into the vial of the protein solution (95 µL of Solution A) with effective shaking. The concentration of the protein is ~0.05 mM assuming the protein concentration is 10 mg/mL and the molecular weight of the protein is ~200KD. Note: We recommend to use 10:1 molar ratio of Solution B (dye)/Solution A (protein). If it is too less or too high, determine the optimal dye/protein ratio at 5:1, 15:1 and 20:1 respectively.
  2. Continue to rotate or shake the reaction mixture at room temperature for 30-60 minutes. 

Purify the conjugation
The following protocol is an example of dye-protein conjugate purification by using a Sephadex G-25 column.
  1. Prepare Sephadex G-25 column according to the manufacture instruction.
  2. Load the reaction mixture (From "Run conjugation reaction") to the top of the Sephadex G-25 column.
  3. Add PBS (pH 7.2-7.4) as soon as the sample runs just below the top resin surface.
  4. Add more PBS (pH 7.2-7.4) to the desired sample to complete the column purification. Combine the fractions that contain the desired dye-protein conjugate. Note: For immediate use, the dye-protein conjugate need be diluted with staining buffer, and aliquoted for multiple uses. Note: For longer term storage, dye-protein conjugate solution need be concentrated or freeze dried. 


Common stock solution preparation

Table 1. Volume of DMSO needed to reconstitute specific mass of iFluor® 740 succinimidyl ester to given concentration. Note that volume is only for preparing stock solution. Refer to sample experimental protocol for appropriate experimental/physiological buffers.

0.1 mg0.5 mg1 mg5 mg10 mg
1 mM64.467 µL322.333 µL644.666 µL3.223 mL6.447 mL
5 mM12.893 µL64.467 µL128.933 µL644.666 µL1.289 mL
10 mM6.447 µL32.233 µL64.467 µL322.333 µL644.666 µL

Molarity calculator

Enter any two values (mass, volume, concentration) to calculate the third.

Mass (Calculate)Molecular weightVolume (Calculate)Concentration (Calculate)Moles


Open in Advanced Spectrum Viewer

Spectral properties

Correction Factor (260 nm)0.16
Correction Factor (280 nm)0.16
Extinction coefficient (cm -1 M -1)2250001
Excitation (nm)742
Emission (nm)764
Quantum yield0.201

Product family

NameExcitation (nm)Emission (nm)Extinction coefficient (cm -1 M -1)Quantum yieldCorrection Factor (260 nm)Correction Factor (280 nm)
iFluor® 350 succinimidyl ester3454502000010.9510.830.23
iFluor® 405 succinimidyl ester4034273700010.9110.480.77
iFluor® 430 succinimidyl ester4334984000010.7810.680.3
iFluor® 440 succinimidyl ester4344804000010.6710.3520.229
iFluor® 450 succinimidyl ester4515024000010.8210.450.27
iFluor® 460 succinimidyl ester468493800001~0.810.980.46
iFluor® 488 succinimidyl ester4915167500010.910.210.11
iFluor® 514 succinimidyl ester5115277500010.8310.2650.116
iFluor® 532 succinimidyl ester5375609000010.6810.260.16
iFluor® 546 succinimidyl ester54155710000010.6710.250.15
iFluor® 555 succinimidyl ester55757010000010.6410.230.14
iFluor® 560 succinimidyl ester56057112000010.5710.04820.069
iFluor® 568 succinimidyl ester56858710000010.5710.340.15
iFluor® 570 succinimidyl ester56057112000010.5810.0480.069
iFluor® 594 succinimidyl ester58860418000010.5310.050.04
iFluor® 597 succinimidyl ester59861810000010.710.3350.514
iFluor® 610 succinimidyl ester61062811000010.8510.320.49
iFluor® 633 succinimidyl ester64065425000010.2910.0620.044
iFluor® 647 succinimidyl ester65667025000010.2510.030.03
iFluor® 660 succinimidyl ester66367825000010.2610.070.08
iFluor® 665 succinimidyl ester667692110,00010.2210.120.09
iFluor® 670 succinimidyl ester67168220000010.5510.030.033
iFluor® 680 succinimidyl ester68470122000010.2310.0970.094
iFluor® 690 succinimidyl ester68570422000010.3010.090.06
iFluor® 700 succinimidyl ester69071322000010.2310.090.04
iFluor® 710 succinimidyl ester71773919000010.6010.120.07
iFluor® 720 succinimidyl ester71674024000010.1410.150.13
iFluor® 750 succinimidyl ester75777927500010.1210.0440.039
iFluor® 770 succinimidyl ester77779725000010.160.090.08
iFluor® 780 succinimidyl ester78480825000010.1610.130.12
iFluor® 790 succinimidyl ester78781225000010.1310.10.09
iFluor® 800 succinimidyl ester80182025000010.1110.030.08
iFluor® 810 succinimidyl ester81182225000010.0510.090.15
iFluor® 820 succinimidyl ester8228502500001-0.110.16
iFluor® 830 succinimidyl ester830867----
iFluor® 840 succinimidyl ester8368792000001-0.20.09
iFluor® 860 succinimidyl ester8538782500001-0.10.14
Show More (38)


View all 8 references: Citation Explorer
Multiplexed non-invasive tumor imaging of glucose metabolism and receptor-ligand engagement using dark quencher FRET acceptor.
Authors: Rudkouskaya, Alena and Sinsuebphon, Nattawut and Ochoa, Marien and Chen, Sez-Jade and Mazurkiewicz, Joseph E and Intes, Xavier and Barroso, Margarida
Journal: Theranostics (2020): 10309-10325
Performance of optoacoustic and fluorescence imaging in detecting deep-seated fluorescent agents.
Authors: Chen, Zhenyue and Deán-Ben, Xosé Luís and Gottschalk, Sven and Razansky, Daniel
Journal: Biomedical optics express (2018): 2229-2239
An enzymatically-sensitized sequential and concentric energy transfer relay self-assembled around semiconductor quantum dots.
Authors: Samanta, Anirban and Walper, Scott A and Susumu, Kimihiro and Dwyer, Chris L and Medintz, Igor L
Journal: Nanoscale (2015): 7603-14
Noninvasive and quantitative assessment of in vivo fetomaternal interface angiogenesis using RGD-based fluorescence.
Authors: Keramidas, M and Lavaud, J and Sergent, F and Hoffmann, P and Brouillet, S and Feige, J-J and Coll, J-L and Alfaidy, N
Journal: BioMed research international (2014): 309082
Multicolor detection of rare tumor cells in blood using a novel flow cytometry-based system.
Authors: Watanabe, Masaru and Uehara, Yuri and Yamashita, Namiko and Fujimura, Yuu and Nishio, Kaori and Sawada, Takeshi and Takeda, Kazuo and Koizumi, Fumiaki and Koh, Yasuhiro
Journal: Cytometry. Part A : the journal of the International Society for Analytical Cytology (2014): 206-13
Intraoperative near-infrared image-guided surgery for peritoneal carcinomatosis in a preclinical experimental model.
Authors: Keramidas, M and Josserand, V and Righini, C A and Wenk, C and Faure, C and Coll, J L
Journal: The British journal of surgery (2010): 737-43
Homogeneous TR-FRET high-throughput screening assay for calcium-dependent multimerization of sorcin.
Authors: Appelblom, Heidi and Nurmi, Jussi and Soukka, Tero and Pasternack, Michael and Penttilä, Kai E and Lövgren, Timo and Niemelä, Pauliina
Journal: Journal of biomolecular screening (2007): 842-8
Analysis of hollow-core photonic bandgap fibers for evanescent wave biosensing.
Authors: Sun, Jian and Chan, Chi-Chiu and Zhang, Yi-Fan and Shum, Ping
Journal: Journal of biomedical optics : 054048